Assessment of the Anticancer Activity of Aegle marmelos Leaf Extracts Against Ehrlich's Ascites Carcinoma (EAC) Cell Line in Swiss Albino Mice
DOI:
https://doi.org/10.71193/jpci.20250013Keywords:
Aegle marmelos, Plant Leaf Extracts Ehrlich’s Ascites Carcinoma (EAC), Anticancer activity, Swiss Albino miceAbstract
Cancer remains a significant health threat globally, and as a result, the demand for safer and more effective alternatives keeps growing. In this current study, we have assayed the anticancer activity of Aegle marmelos extract on Ehrlich Ascites Carcinoma (EAC) cells on Swiss Albino mice. Three extracts were prepared: a methanolic (APME), chloroform (APCE), and n-hexane (APHE) extract. These extracts were administered intraperitoneally in doses of 50 mg/kg and 100 mg/kg per dose on 6 consecutive days to mice. The anticancer activity was assessed from viable tumor cell count, with percentage (%) inhibition of cell growth, and changes in body weight of the mice that had been treated with extracts. Of all the extracts, APHE exhibited the most tumor growth inhibition (62.2% at 100 mg/kg), followed by APME (59.25%) and APCE (54.86%), compared to the standard chemotherapy drug doxorubicin (81.6% inhibition at 0.8 mg/kg/day). Mice treated with the extracts experienced less weight loss than the control group, with an approximate effect of 0.50 ± 0.06 g/day. A Brine Shrimp Lethality Bioassay demonstrated a cytotoxic dose-dependent impact, with LC50 values of 18.38, 36.79, and 46.45 micrograms per milliliter for n-hexane, methanolic, and chloroform extracts, respectively. The tumor suppression and cytotoxicity effects of Aegle marmelos extracts are probably attributable to the bioactive compounds such as flavonoids, alkaloids, and essential oils that have known apoptotic and antiproliferative activities. The extracts were not as effective as doxorubicin; however, the extracts’ natural composition and ability to reduce weight loss due to cancer indicate potential to be used in combination with or as an alternative to cancer-treating medications. Further research includes that mechanistic studies and clinical trials are needed to confirm their therapeutic potential.
Downloads
References
Abraham, J., & Staffurth, J. (2016). Hormonal cancer therapy. Medicine, 44(1), 30–33. https://doi.org/10.1016/j.mpmed.2015.10.014 DOI: https://doi.org/10.1016/j.mpmed.2015.10.014
Absher, M. (1973). Hemocytometer counting. In Elsevier eBooks (pp. 395–397). https://doi.org/10.1016/b978-0-12-427150-0.50098-x DOI: https://doi.org/10.1016/B978-0-12-427150-0.50098-X
Aggarwal, B. B., Ichikawa, H., Garodia, P., Weerasinghe, P., Sethi, G., Bhatt, I. D., Pandey, M. K., Shishodia, S., & Nair, M. G. (2006). From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opinion on Therapeutic Targets, 10(1), 87–118. https://doi.org/10.1517/14728222.10.1.87 DOI: https://doi.org/10.1517/14728222.10.1.87
Alam, A. K., Hossain, A. S., Khan, M. A., Kabir, S. R., Reza, M. A., Rahman, M. M., Islam, M. S., Rahman, M. A. A., Rashid, M., & Sadik, M. G. (2016). The Antioxidative Fraction of White Mulberry Induces Apoptosis through Regulation of p53 and NFκB in EAC Cells. PLoS ONE, 11(12), e0167536. https://doi.org/10.1371/journal.pone.0167536 DOI: https://doi.org/10.1371/journal.pone.0167536
Allen, C., Her, S., & Jaffray, D. A. (2017). Radiotherapy for cancer: present and future. Advanced Drug Delivery Reviews, 109, 1–2. https://doi.org/10.1016/j.addr.2017.01.004 DOI: https://doi.org/10.1016/j.addr.2017.01.004
Arora, S., & Tandon, S. (2015). DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells. Homeopathy: the journal of the Faculty of Homeopathy, 104(1), 36–47. https://doi.org/10.1016/j.homp.2014.10.001 DOI: https://doi.org/10.1016/j.homp.2014.10.001
Azwanida, N. N. (2015). A review of the extraction methods used in medicinal plants, principles, strengths, and limitations. Medicinal & Aromatic Plants, 4(3), 196. https://doi.org/10.4172/2167-0412.1000196 DOI: https://doi.org/10.4172/2167-0412.1000196
Baliga, M. S., Thilakchand, K. R., Rai, M. P., Rao, S., & Venkatesh, P. (2012). Aegle marmelos (L.) Correa (Bael) and Its Phytochemicals in the Treatment and Prevention of Cancer. Integrative Cancer Therapies, 12(3), 187–196. https://doi.org/10.1177/1534735412451320
Baliga, M. S., Thilakchand, K. R., Rai, M. P., Rao, S., & Venkatesh, P. (2013). Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integrative cancer therapies, 12(3), 187–196. https://doi.org/10.1177/1534735412451320 DOI: https://doi.org/10.1177/1534735412451320
Bansal, Y., & Bansal, G. (2011). Analytical methods for standardization of Aegle marmelos: A review. Journal of Pharmaceutical Education and Research, 2(2), 37.
Charoensiddhi, S., & Anprung, P. (2008). Bioactive compounds and volatile compounds of Thai bael fruit (Aegle marmelos (L.) Correa) as a valuable source for functional food ingredients. Int. Food Res. J, 15(3), 287-295.
Chen, Y., & Chiang, P. (2024). An automated approach for hemocytometer cell counting based on an image-processing method. Measurement, 234, 114894. https://doi.org/10.1016/j.measurement.2024.114894 DOI: https://doi.org/10.1016/j.measurement.2024.114894
Cragg, G. M., Grothaus, P. G., & Newman, D. J. (2009). Impact of natural products on developing new Anti-Cancer agents. Chemical Reviews, 109(7), 3012–3043. https://doi.org/10.1021/cr900019j DOI: https://doi.org/10.1021/cr900019j
Crispo, F., Condelli, V., Lepore, S., Notarangelo, T., Sgambato, A., Esposito, F., Maddalena, F., & Landriscina, M. (2019). Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression. Cells, 8(8), 798. https://doi.org/10.3390/cells8080798 DOI: https://doi.org/10.3390/cells8080798
Croce, C. M. (2008). Oncogenes and cancer. New England Journal of Medicine, 358(5), 502–511. https://doi.org/10.1056/nejmra072367 DOI: https://doi.org/10.1056/NEJMra072367
Dhankhar, S., Ruhil, S., Balhara, M., Dhankhar, S., & Chhillar, A. K. (2011). Aegle marmelos (Linn.) Correa: A potential source of Phytomedicine. J Med Plant Res, 5(9), 1497-1507.
Fadeel, B., & Orrenius, S. (2005). Apoptosis: a basic biological phenomenon with wide‐ranging implications in human disease. Journal of Internal Medicine, 258(6), 479–517. https://doi.org/10.1111/j.1365-2796.2005.01570.x DOI: https://doi.org/10.1111/j.1365-2796.2005.01570.x
Fadlalla, K., Watson, A., Yehualaeshet, T., Turner, T., & Samuel, T. (2011). Ruta graveolens extract induces DNA damage pathways and blocks Akt activation to inhibit cancer cell proliferation and survival. Anticancer research, 31(1), 233–241.
Frixa, T., Donzelli, S., & Blandino, G. (2015). Oncogenic MicroRNAs: key players in malignant transformation. Cancers, 7(4), 2466–2485. https://doi.org/10.3390/cancers7040904 DOI: https://doi.org/10.3390/cancers7040904
Goel, R., Ghatule, R., Gautam, M., Goel, S., Singh, A., & Joshi, V. (2014). Protective effects of Aegle marmelos fruit pulp on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis. Pharmacognosy Magazine, 10(37), 147. https://doi.org/10.4103/0973-1296.127366 DOI: https://doi.org/10.4103/0973-1296.127366
Gupta, N., Agrawal, R. C., Sharma, P., & Narwariya, A. (2016). Anticancer potential of Aegle marmelos bark extract against DMBA-induced skin papillomagenesis with reference to oxidative stress. Eur. J. Pharm. Med. Res, 3(4), 309-314.
Harborne, J. B. (1998). Phytochemical Methods: A guide to modern techniques of plant analysis. (n.d.-b). SpringerLink. https://link.springer.com/book/9780412572609
Hilal, B., Khan, M. M., & Fariduddin, Q. (2024). Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. Plant Physiology and Biochemistry, 211, 108674. https://doi.org/10.1016/j.plaphy.2024.108674 DOI: https://doi.org/10.1016/j.plaphy.2024.108674
Imran, M., Aslam Gondal, T., Atif, M., Shahbaz, M., Batool Qaisarani, T., Hanif Mughal, M., Salehi, B., Martorell, M., & Sharifi-Rad, J. (2020). Apigenin as an anticancer agent. Phytotherapy research: PTR, 34(8), 1812–1828. https://doi.org/10.1002/ptr.6647 DOI: https://doi.org/10.1002/ptr.6647
Ioele, G., Chieffallo, M., Occhiuzzi, M. A., De Luca, M., Garofalo, A., Ragno, G., & Grande, F. (2022). Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules, 27(17), 5436. https://doi.org/10.3390/molecules27175436 DOI: https://doi.org/10.3390/molecules27175436
Katagi, K. S., Munnolli, R. S., & Hosamani, K. M. (2011). Unique occurrence of unusual fatty acid in the seed oil of Aegle marmelos Corre: Screening the rich source of seed oil for bio-energy production. Applied Energy, 88(5), 1797-1802. DOI: https://doi.org/10.1016/j.apenergy.2010.12.010
Katiyar, S. (2005). Silymarin and skin cancer prevention: Anti-inflammatory, antioxidant and immunomodulatory effects (Review). International Journal of Oncology. https://doi.org/10.3892/ijo.26.1.169 DOI: https://doi.org/10.3892/ijo.26.1.169
Kohli, A., Ahmad, T., & Singh, S. (2022). Aegle marmelos (Bael) and Annona squamosa (Sugar Apple). In CRC Press eBooks (pp. 339–364). https://doi.org/10.1201/9781003205067-17 DOI: https://doi.org/10.1201/9781003205067-17
Li, W., Swiderski, K., Murphy, K. T., & Lynch, G. S. (2022). Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel, Switzerland), 11(2), 183. https://doi.org/10.3390/antiox11020183 DOI: https://doi.org/10.3390/antiox11020183
Lichota, A., & Gwozdzinski, K. (2018). Anticancer Activity of Natural Compounds from Plant and Marine Environment. International Journal of Molecular Sciences, 19(11), 3533. https://doi.org/10.3390/ijms19113533 DOI: https://doi.org/10.3390/ijms19113533
Mahato, H., & Kumar, B. (2022). Medicinal Uses with Immense Economic Potential and Nutritional Properties of Aegle marmelos: A Concise Review. IntechOpen. http://dx.doi.org/10.5772/intechopen.102876 DOI: https://doi.org/10.5772/intechopen.102876
Mitchison, D. (1979). Basic mechanisms of chemotherapy. CHEST Journal, 76(6), 771–780. https://doi.org/10.1378/chest.76.6.771 DOI: https://doi.org/10.1378/chest.76.6.771
Modrzyński, J. J., Christensen, J. H., & Brandt, K. K. (2019). Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds. Ecotoxicology, 28(9), 1136–1141. https://doi.org/10.1007/s10646-019-02107-0 DOI: https://doi.org/10.1007/s10646-019-02107-0
Mohamed, S. I. A., Jantan, I., & Haque, M. A. (2017). Naturally occurring immunomodulators with antitumor activity: An insight into their mechanisms of action. International Immunopharmacology, 50, 291–304. https://doi.org/10.1016/j.intimp.2017.07.010 DOI: https://doi.org/10.1016/j.intimp.2017.07.010
Neha, R., Sridevi, G., Selvaraj, J., & Preetha, S. (2021). Evaluation of Anticancer Effect of Aegle marmelos in Human Breast Cancer Cells by In-vitro Analysis. Journal of Pharmaceutical Research International, 33(62A), 464–471. https://doi.org/10.9734/jpri/2021/v33i62A35669 DOI: https://doi.org/10.9734/jpri/2021/v33i62A35669
Nygren, P. (2001). What is cancer chemotherapy? Acta Oncologica, 40(2–3), 166–174. https://doi.org/10.1080/02841860151116204 DOI: https://doi.org/10.1080/02841860151116204
Ong, C. S., Zhou, J., Ong, C. N., & Shen, H. M. (2010). Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway. Cancer letters, 298(2), 167–175. https://doi.org/10.1016/j.canlet.2010.07.001 DOI: https://doi.org/10.1016/j.canlet.2010.07.001
Padhy, I., Paul, P., Sharma, T., Banerjee, S., & Mondal, A. (2022). Molecular Mechanisms of Action of Eugenol in Cancer: Recent Trends and Advancements. Life (Basel, Switzerland), 12(11), 1795. https://doi.org/10.3390/life12111795 DOI: https://doi.org/10.3390/life12111795
Prakash, D., Upadhyay, G., Pushpangadan, P., & Gupta, C. (2011). Antioxidant and free radical scavenging activities of some fruits. Journal of complementary & integrative medicine, 8, 10.2202/1553-3840.1513. https://doi.org/10.2202/1553-3840.1513 DOI: https://doi.org/10.2202/1553-3840.1513
Pynam, H., & Dharmesh, S. M. (2018). Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 106, 98–108. https://doi.org/10.1016/j.biopha.2018.06.053 DOI: https://doi.org/10.1016/j.biopha.2018.06.053
Rahman, S., & Parvin, R. (2014). Therapeutic potential of Aegle marmelos (L.)-An overview. Asian Pacific Journal of Tropical Disease, 4(1), 71–77. https://doi.org/10.1016/S2222-1808(14)60318-2 DOI: https://doi.org/10.1016/S2222-1808(14)60318-2
Rao, C., Amresh, R., Irfan, A., Rawat, A., & Pushpangadan, P. (2003). Protective Effect of Aegle marmelos Fruit in Gastrointestinal Dysfunction in Rats. Pharmaceutical Biology, 41(8), 558–563. https://doi.org/10.1080/13880200390501190 DOI: https://doi.org/10.1080/13880200390501190
Roleira, F. M., Tavares-Da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant-derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235–258. https://doi.org/10.1016/j.foodchem.2015.03.039 DOI: https://doi.org/10.1016/j.foodchem.2015.03.039
Sabu, M. C., & Kuttan, R. (2004). Antidiabetic activity of Aegle marmelos and its relationship with its antioxidant properties. PubMed, 48(1), 81–88. https://pubmed.ncbi.nlm.nih.gov/15270373
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation, and characterization of bioactive compounds from plant extracts. African journal of traditional, complementary, and alternative medicines: AJTCAM, 8(1), 1–10. DOI: https://doi.org/10.4314/ajtcam.v8i1.60483
Schaue, D., & McBride, W. H. (2015). Opportunities and challenges of radiotherapy for treating cancer. Nature Reviews Clinical Oncology, 12(9), 527–540. https://doi.org/10.1038/nrclinonc.2015.120 DOI: https://doi.org/10.1038/nrclinonc.2015.120
Shrihastini, V., Muthuramalingam, P., Adarshan, S., Sujitha, M., Chen, J., Shin, H., & Ramesh, M. (2021). Plant-derived bioactive compounds, their Anti-Cancer effects, and in silico approaches as an alternative target treatment strategy for breast cancer: an updated overview. Cancers, 13(24), 6222. https://doi.org/10.3390/cancers13246222 DOI: https://doi.org/10.3390/cancers13246222
Singh, A., & S R. (2023). Cancer: Unraveling the complexities of uncontrolled growth and metastasis. PEXACY International Journal of Pharmaceutical Science. https://doi.org/10.5281/zenodo.8266559
Sushmitha, V., Sridevi, G., Selvaraj, J., & Preetha, S. (2021). Anticancer Activity of Aegle marmelos on Human HepG2 Cells by Regulation of Matrix Metalloproteinases Expression. Journal of Pharmaceutical Research International, 33(60B), 3901–3908. https://doi.org/10.9734/jpri/2021/v33i60B35093 DOI: https://doi.org/10.9734/jpri/2021/v33i60B35093
Timalsina, D., Pokhrel, K. P., & Bhusal, D. (2021). Pharmacologic activities of Plant-Derived natural products on respiratory diseases and inflammations. BioMed Research International, 2021, 1–23. https://doi.org/10.1155/2021/1636816 DOI: https://doi.org/10.1155/2021/1636816
Tohme, S., Simmons, R. L., & Tsung, A. (2017). Surgery for Cancer: a trigger for metastases. Cancer Research, 77(7), 1548–1552. https://doi.org/10.1158/0008-5472.can-16-1536 DOI: https://doi.org/10.1158/0008-5472.CAN-16-1536
Turner, P. V., Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of substances to laboratory animals: routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50(5), 600-613.
Vasava, D., Kher, M. M., Nataraj, M., & Da Silva, J. A. T. (2018). Bael tree (Aegle marmelos (L.) Corrêa): importance, biology, propagation, and future perspectives. Trees, 32(5), 1165–1198. https://doi.org/10.1007/s00468-018-1754-4 DOI: https://doi.org/10.1007/s00468-018-1754-4
Venkatakarthikeswari, G. V., Devi, R. G., Selavaraj, J., & Priya, A. J. (2021). Study on the Anti-cancer Potential of Aegle marmelos Fruit Extract Pro and Anti-apoptotic Molecule in Human Melanoma Cell Line A375. Journal of Pharmaceutical Research International, 33(59A), 287–294. https://doi.org/10.9734/jpri/2021/v33i59A34273 DOI: https://doi.org/10.9734/jpri/2021/v33i59A34273
Venthodika, A., Chhikara, N., Mann, S., Garg, M. K., Sofi, S. A., & Panghal, A. (2020). Bioactive compounds of Aegle marmelos L., medicinal values and their food applications: A critical review. Phytotherapy Research, 35(4), 1887–1907. https://doi.org/10.1002/ptr.6934 DOI: https://doi.org/10.1002/ptr.6934
Wang, X., Tanaka, M., Krstin, S., Peixoto, H. S., & Wink, M. (2016). The Interference of Selected Cytotoxic Alkaloids with the Cytoskeleton: An Insight into Their Modes of Action. Molecules (Basel, Switzerland), 21(7), 906. https://doi.org/10.3390/molecules21070906 DOI: https://doi.org/10.3390/molecules21070906
Weinberg, R. A. (1991). Tumor suppressor genes. Science, 254(5035), 1138–1146. https://doi.org/10.1126/science.1659741 DOI: https://doi.org/10.1126/science.1659741
Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30(1). https://doi.org/10.1186/1756-9966-30-87 DOI: https://doi.org/10.1186/1756-9966-30-87
Wyld, L., Audisio, R. A., & Poston, G. J. (2014). The evolution of cancer surgery and future perspectives. Nature Reviews Clinical Oncology, 12(2), 115–124. https://doi.org/10.1038/nrclinonc.2014.191 DOI: https://doi.org/10.1038/nrclinonc.2014.191
Yadav, N., Tyagi, G., Jangir, D. K., & Mehrotra, R. (2011). Rapid determination of polyphenol, vitamins, organic acids, and sugars in Aegle marmelos using reverse phase-high performance liquid chromatography. J Pharm Res, 4(3), 717-719.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Md. Arafat Hossain, Md. Takdir Hossain (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.