Phytochemical Screening, FT-IR and GC-MS Analysis of Extracts from Aloe Aculeata Pole-Evans Leaves used for Managing Poultry Health in Drylands of Zimbabwe
DOI:
https://doi.org/10.71193/jpci.20250012Keywords:
Aloe aculeata, poultry, drylands, ethnoveterinary, phytochemical, drug developmentAbstract
Due to limited veterinary facilities, farmers in remote areas of Zimbabwe rely heavily on herbal ethnoveterinary medicines as a feasible alternative to conventional veterinary operations. Medicinal plants may be the best prospects for developing drugs to treat animal health problems. The medicinal properties of medicinal plants are attributable to the existence of diverse bioactive compounds with varying compositions that arise as secondary metabolites. According to research conducted in the drylands of Zimbabwe's Masvingo province, Aloe aculeata was the most commonly utilized Aloe species for managing poultry health. However, the scientific basis for the curative properties of Aloe aculeata had not yet been established. As a result, this study was done to address the aforementioned knowledge gap with the objective of performing a preliminary investigation of potential phytochemicals and to identify and characterize potential phytochemicals using FT-IR analysis and the GC-MS technique. Tannins, phenolic compounds, flavonoids, and phlobatannins tests gave positive results across extracts from shade-dried and fresh leaves from all three solvents (hexane, distilled water, ethanol). Flavonoids had the highest concentration in the leaf samples (5.6%), followed by alkaloids (3.2%) and saponins (3.15%). FT-IR analysis confirmed the presence of phenols, amines, aromatics, alkynes, alkenes, and quinones due to the functional groups that were detected. GC-MS analysis showed the presence of 32 compounds, and 17 have reported pharmacological activity. The high number of phytochemicals and compounds with pharmaceutical value justifies the use of Aloe aculeata in managing poultry diseases. The findings of the present study offer the ethnomedical use of this plant for the development of herbal drugs for the management of poultry health.
Downloads
References
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, Isolation and Identification of Bioactive Compounds from Plant Extracts. Plants, 6(42). https://doi.org/10.3390/plants6040042 DOI: https://doi.org/10.3390/plants6040042
Ameena, M., Arumugham, M., Ramalingam, K., & Shanmugam, R. (2024). Biomedical Applications of Lauric Acid : A Narrative Review. Cureus, 16(6), 1–10. https://doi.org/10.7759/cureus.62770 DOI: https://doi.org/10.7759/cureus.62770
Arunkumar, S., & Muthuselvam, M. (2009). Analysis of Phytochemical Constituents and Antimicrobial Activities of Aloe vera L . Against Clinical Pathogens. World Journal of Agricultural Sciences, 5(5), 572–576.
Ashraf, M. V., Pant, S., Khan, M. A. H., Shah, A. A., & Siddiqui, S. (2023). Phytochemicals as Antimicrobials : Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals, 16(881), 1–56. DOI: https://doi.org/10.3390/ph16060881
Awang-Kanak, F., Bakar, M. F. A., & Mohamed, M. (2019). Ethnobotanical note , total phenolic content , total flavonoid content , and antioxidative activities of wild edible vegetable , Crassocephalum crepidioides from Kota Belud , Sabah. IOP Conference Series: Earth and Environmental Science, 269(1). https://doi.org/10.1088/1755-1315/269/1/012012 DOI: https://doi.org/10.1088/1755-1315/269/1/012012
Azwanida, N. (2015). A Review on the Extraction Methods Use in Medicinal Plants , Principle , Strength and Limitation. Medicinal & Aromatic Plants, 4(3), 3–8. https://doi.org/10.4172/2167-0412.1000196 DOI: https://doi.org/10.4172/2167-0412.1000196
Balsano, C., & Alisi, A. (2009). Antioxidant Effects of Natural Bioactive Compounds. Current Pharmaceutical Design, 15, 3063–3073. DOI: https://doi.org/10.2174/138161209789058084
Bao, L., Sun, H., Zhao, Y., Feng, L., Wu, K., Shang, S., & Xu, J. (2023). Hexadecanamide alleviates Staphylococcus aureus -induced mastitis in mice by inhibiting inflammatory responses and restoring blood- milk barrier integrity. PLOS Pathogens, 19(11), 1–22. https://doi.org/10.1371/journal.ppat.1011764 DOI: https://doi.org/10.1371/journal.ppat.1011764
Barbosa, A. D. E. P. (2014). An Overview on the Biological and Pharmacological Activities of Saponins. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 6–9.
Bhagwat, J. K., & Ambre, M. B. (2023). Pharmacological Application of Thiophene Derivatives. International Journal of Multidisciplinary Research, 8(224), 212–217. https://doi.org/10.36713/epra2013 DOI: https://doi.org/10.36713/epra13592
Bohm, B. A., & Koupai-Abyazani, M. R. (1994). Flavonoids and Condensed Tannins from Leaves of Hawaiian Vaccinium reticulatum and V . calycinum ( Ericaceae ). Pacific Science, 48(4), 458–463.
Carvalho, A. M. S., Heimfarth, L., Willyame, E., Pereira, M., Menezes, I. R. A., Coutinho, H. D. M., Picot, L., & Antoniolli, A. R. (2019). Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti- in fl ammatory, and Antiarthritic E ff ects: Possible NF κ B Pathway Involvement and Reduced Levels of the Proin fl ammatory Cytokines TNF ‑ α and IL ‑ 6. Journal of Natural Products, 83(4), 1107–1117. https://doi.org/10.1021/acs.jnatprod.9b01116 DOI: https://doi.org/10.1021/acs.jnatprod.9b01116
Cozzone, A. J. (2002). Proteins : Fundamental Chemical Properties. Encyclopedia of Life Sciences, John Wiley & Sons, 1–10. DOI: https://doi.org/10.1038/npg.els.0001330
Diem Do, Q., Elisa, A., & Tran-nguyen, P. L. (2013). Effect of extraction solvent on total phenol content , total flavonoid content , and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001 DOI: https://doi.org/10.1016/j.jfda.2013.11.001
Egbuna, C., Gupta, E., Ezzat, S. M., Jeevanandam, J., Mishra, N., Akram, M., Sudharani, N., Adetunji, C. O., Singh, P., Ifemeje, J. C., Deepak, M., Bhavana, A., Walag, A. M. P., Ansari, R., Adetunji, J. B., Laila, U., & Olisah, M. C. (2020). Aloe Species as Valuable Sources of Functional Bioactives. In Functional Foods and Nutraceuticals: Bioactive compnents, Formulations and Innovations (pp. 337–387). Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-030-42319-3_18
Elshafie, H. S., & Camele, I. (2023). A Comprehensive Review on the Biological , Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. International Journal of Molecular Sciences, 24, 3266. DOI: https://doi.org/10.3390/ijms24043266
Entigu, R., Linton, A., Lihan, S., & Ahmad, I. (2013). The Effect Of Combination Of Octadecanoic Acid , Methyl Ester And Ribavirin Against Measles Virus. International Journal of Scientifc and Technology Research, 2(10), 181–184.
Ertl, P., Altmann, E., & Mckenna, M. (2020). The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. Journal of Medicinal Chemistry, 63, 8408–8418. https://doi.org/10.1021/acs.jmedchem.0c00754 DOI: https://doi.org/10.1021/acs.jmedchem.0c00754
Fern, D., & Aguilar, M. R. (2019). Folic Acid Antagonists : Antimicrobial and Immunomodulating Mechanisms and Applications. International Journal of Molecular Sciences, 20, 1–30. DOI: https://doi.org/10.3390/ijms20204996
Fischer, C. L., Drake, D. R., Dawson, D. V, Blanchette, D. R., Brogden, K. A., & Wertz, P. W. (2012). Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 56(3), 1157–1161. https://doi.org/10.1128/AAC.05151-11 DOI: https://doi.org/10.1128/AAC.05151-11
Gariba, S. Y., Dzidzienyo, D. K., & Eziah, V. Y. (2021). Assessment of four plant extracts as maize seed protectants against Sitophilus zeamais and Prostephanus truncatus in Ghana. Cogent Food & Agriculture, 7(1). https://doi.org/10.1080/23311932.2021.1918426 DOI: https://doi.org/10.1080/23311932.2021.1918426
Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2011). Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger ( Zingiber officinale Roscoe ) extracts. Journal of Medicinal Plants Research, 5(7), 1147–1154.
Ghidoli, M., Colombo, F., Sangiorgio, S., Landoni, M., & Berry, E. (2021). Food Containing Bioactive Flavonoids and Other Phenolic or Sulfur Phytochemicals With Antiviral Effect : Can We Design a Promising Diet Against COVID-19 ? Frontiers in Nutrition, 8(June), 1–15. https://doi.org/10.3389/fnut.2021.661331 DOI: https://doi.org/10.3389/fnut.2021.661331
Glomb, T., & Swiatek, P. (2021). Antimicrobial Activity of 1 , 3 , 4-Oxadiazole Derivatives. International Journal of Mplecular Sciences, 22(6979). DOI: https://doi.org/10.3390/ijms22136979
Gobvu, V., Poshiwa, X., & Benhura, M. A. (2024). An ethnoveterinary survey of medicinal plants used to treat poultry diseases in drylands of Zimbabwe. Ethnobotany Research & Applications, 29(31), 1–20. DOI: https://doi.org/10.32859/era.29.31.1-20
Gobvu, V., Pote, W., Poshiwa, X., & Benhura, M. A. (2023). A review of ethnoveterinary medicines used for poultry health management in Zimbabwe. World’s Poultry Science Journal, 1–15. https://doi.org/10.1080/00439339.2023.2234345 DOI: https://doi.org/10.1080/00439339.2023.2234345
Gonzalez-rivera, M. L., Barragan-galvez, J. C., Gasca-mart, D., Hidalgo-figueroa, S., Isiordia-espinoza, M., & Alonso-castro, A. J. (2023). In Vivo Neuropharmacological Effects of Neophytadiene. Molecules, 28, 1–12. DOI: https://doi.org/10.3390/molecules28083457
Gopu, C., Chirumamilla, P., Daravath, S. B., Vankudoth, S., & Taduri, S. (2021). GC-MS analysis of bioactive compounds in the plant parts of methanolic extracts of Momordica cymbalaria Fenzl. Journal of Medicinal Plants Studies, 9(3), 209–218. https://doi.org/10.22271/plants.2021.v9.i3c.1289 DOI: https://doi.org/10.22271/plants.2021.v9.i3c.1289
Gurib-fakim, A. (2006). Medicinal plants : Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine, 27, 1–93. https://doi.org/10.1016/j.mam.2005.07.008 DOI: https://doi.org/10.1016/j.mam.2005.07.008
Harbone, J. B. (1973). A chemotaxonomic survey of flavonoids and simple phenols in leaves of the Ericaceae. Bot. J. Linn. Soc, 66, 37–54. DOI: https://doi.org/10.1111/j.1095-8339.1973.tb02159.x
Hiley, C. R., & Hoi, P. M. (2007). Oleamide : A Fatty Acid Amide Signaling Molecule in the Cardiovascular System ? Cardiovascular Drug Reviews, 25(1), 46–60. DOI: https://doi.org/10.1111/j.1527-3466.2007.00004.x
Hiremathad, A., Patil, M. R., Chand, K., Santos, M. A., & Keri, R. S. (2015). Benzofuran: an emerging scaffold for antimicrobial agents. Royal Society of Chemistry, 5, 96809–96828. https://doi.org/10.1039/c5ra20658h DOI: https://doi.org/10.1039/C5RA20658H
Holloway, P. W., & Wakil, S. J. (1964). Synthesis of Fatty Acids in Animal Tissues. Journal of Biological Chemistry, 239(8), 2489–2495. https://doi.org/10.1016/S0021-9258(18)93878-0 DOI: https://doi.org/10.1016/S0021-9258(18)93878-0
Jacome-sosa, M., Vacca, C., Mangat, R., Diane, A., Nelson, R. C., Reaney, M. J., Shen, J., Curtis, J. M., Vine, D. F., Field, C. J., Igarashi, M., Piomelli, D., Banni, S., & Proctor, S. D. (2016). Vaccenic acid suppresses intestinal infl ammation by increasing anandamide and related N -acylethanolamines in the JCR : LA-cp rat. Journal Lipid Research, 57(4), 638–649. https://doi.org/10.1194/jlr.M066308 DOI: https://doi.org/10.1194/jlr.M066308
Jaiswal, L., Ismail, H., & Worku, M. (2020). A Review of the Effect of Plant-derived Bioactive Substances on the Inflammatory Response of Ruminants (Sheep, Cattle, and Goats). International Journal of Veterinary and Animal Medicine, 3(2). https://doi.org/10.31021/ijvam.20203130
Khan, I. H., & Javaid, A. (2022). Hexane soluble bioactive components of leaf extract of quinoa. Journal of Animal & Plant Sciences, 32(2), 609–614. https://doi.org/10.36899/JAPS.2022.2.0461 DOI: https://doi.org/10.36899/JAPS.2022.2.0461
Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y., & Kim, H. P. (1999). Effects of Naturally Occurring Flavonoids on Nitric Oxide Production in the Macrophage Cell Line RAW 264 . 7 and Their Structure – Activity Relationships. Biochemical Pharmacology, 58(99), 2952. DOI: https://doi.org/10.1016/S0006-2952(99)00160-4
Konuk, H., & Ergüden, B. (2020). Phenolic – OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia Microbiologica, 65(4), 775–783. DOI: https://doi.org/10.1007/s12223-020-00787-4
Krishnan, K. R., James, F., & Mohan, A. (2016). Isolation and characterization of n-hexadecanoic acid from Canthium parviflorum leaves. Journal of Chemical and Pharmaceutical Research, 8(8), 614–617.
Kumar, S., & Pandey, A. K. (2015). Free Radicals : Health Implications and their Mitigation by Herbals. British Journal of Medicine &Medical Research, 7(6), 438–457. https://doi.org/10.9734/BJMMR/2015/16284 DOI: https://doi.org/10.9734/BJMMR/2015/16284
Kumarasamy, S., & Senthamarai, S. V. (2020). Extraction of Phytochemicals of Artocarpus altilis ( Parkinson ) Fosberg ( seedless ) fruit pulp using Non-polar and Polar Solvents. International Journal of Scientific Research in Engineering and Management, 04(03), 1–13.
Lagu, C., & Kayanja, F. I. B. (2010). Medicinal plant extracts widely used in the control of Newcastle disease (NCD) and helminthosis among village chickens of South Western Uganda. In Livestock Research for Rural Development (Vol. 22, Issue 11).
Lahlou, M. (2013). The Success of Natural Products in Drug Discovery. Pharmacology & Pharmacy, 4, 17–31. DOI: https://doi.org/10.4236/pp.2013.43A003
Manilal, A., Sugathan, S., Kiran, S., & Selvin, J. (2009). Cytotoxic Potentials of Red Alga , Laurencia brandenii Collected from the Indian Coast. Global Journal of Pharmacology, 3(2), 90–94.
Mapunya, M. B., Nikolova, R. V., & Lall, N. (2012). Melanogenesis and Antityrosinase Activity of Selected South African Plants. Evidence-Based Complementary Alternative Medicine, 1–6. https://doi.org/10.1155/2012/374017 DOI: https://doi.org/10.1155/2012/374017
Matosiuk, D., Fidecka, S., Antkiewicz-michaluk, L., Dybała, I., & Koziol, A. (2001). Synthesis and pharmacological activity of chain derivatives of 1-aryl-2-iminoimidazolidine containing urea moiety. European Journal of Medicinal Chemistry, 36(01), 783–797. DOI: https://doi.org/10.1016/S0223-5234(01)01267-3
Matsuura, H. N., & Fett-neto, A. G. (2015). Plant Alkaloids : Main Features , Toxicity , and Mechanisms of Action. Plant Toxins, 2(7), 1–15. https://doi.org/10.1007/978-94-007-6728-7 DOI: https://doi.org/10.1007/978-94-007-6728-7_2-1
Mazumder, K., Nabila, A., Aktar, A., & Frahnaky, A. (2020). Bioactive Variability and In Vitro and In Vivo Antioxidant Activity of Unprocessed and Processed Flour of Nine Cultivars of Australian lupin Species : Antioxidants, 9, 282. DOI: https://doi.org/10.3390/antiox9040282
Meyer, E. A., Castellano, R. K., & Diederich, F. (2003). Interactions with Aromatic Rings in Chemical and Biological Recognition Angewandte. Angewandte Chemie, 42(11), 1210–1250. DOI: https://doi.org/10.1002/anie.200390319
Miao, Y., Hu, Y., Yang, J., Liu, T., & Sun, J. (2019). Natural source, bioactivity and synthesis of benzofuran derivatives. Royal Society of Chemistry, 9, 27510–27540. https://doi.org/10.1039/c9ra04917g DOI: https://doi.org/10.1039/C9RA04917G
Mohanty, P., Sahoo, S., Behera, S., Behura, R., Acharya, A., Biswal, D., Suna, S. K., Sahoo, R., Soreen, R. C., & Jali, B. R. (2022). A Brief Review : Antibacterial Activity of Quinone Derivatives. Biointerface Research in Applied Chemistry, 12(3), 3247–3258. DOI: https://doi.org/10.33263/BRIAC123.32473258
Momodu, I. B., Okungbiwa, E. S., Agoreyo, B. O., & Maliki, M. M. (2022). Gas Chromatography – Mass Spectrometry Identification of Bioactive Compounds in Methanol and Aqueous Seed Extracts of Azanza garckeana Fruits. Nigerian Journal of Biotechnology Special Edition, 38, 25–38. DOI: https://doi.org/10.4314/njb.v38i1.3S
Nandiyanto, D., Oktiani, R., & Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science & Technology, 4(1), 97–118. DOI: https://doi.org/10.17509/ijost.v4i1.15806
Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean ( Phaseolus vulgaris ) seeds. Brazilian Journal of Pharmaceutical Sciences, 56, 1–9. DOI: https://doi.org/10.1590/s2175-97902019000417129
Nonthalee, S., Maneechai, S., Saensouk, S., & Saensouk, P. (2023). Comparative Phytochemical Profiling ( GC-MS and HPLC ) and Evaluation of Antioxidant Activities of Wild , In Vitro Cultured and Greenhouse Plants of Kaempferia grandifolia Saensouk and Jenjitt and Kaempferia siamensis Sirirugsa ; Rare Plant Species in Tha. Pharmacognnosy Magazine, 19(1), 156–167. https://doi.org/10.1177/09731296221145066 DOI: https://doi.org/10.1177/09731296221145066
Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P. (2022). Extraction Methods , Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles : A Review. Plants, 11(2011), 1–17. DOI: https://doi.org/10.3390/plants11152011
Nwozo, O. S., Effiong, E. M., Aja, P. M., & Effiong, E. M. (2023). Antioxidant , phytochemical , and therapeutic properties of medicinal plants : a review. International Journal of Food Properties, 26(1), 359–388. https://doi.org/10.1080/10942912.2022.2157425 DOI: https://doi.org/10.1080/10942912.2022.2157425
Obadoni, B. O., & Ochuko, P. O. (2002). Phytochemical Studies and Comparative Efficacy of the Crude Extracts of some Haemostatic Plants in Edo and Delta States of Nigeria. Global Journal of Pure and Applied Sciences, 8(2), 203–208. DOI: https://doi.org/10.4314/gjpas.v8i2.16033
Okeke, S. N., Chinyere, G. C., & Emmanuel, O. (2024). Toxicity and phyto-bioactive constituent of Ficus aurea L . leaf extract : A trado-medicinal herb used in southeastern Nigeria. Clinical Traditional Medicine and Pharmacology, 5(3), 200158. https://doi.org/10.1016/j.ctmp.2024.200158 DOI: https://doi.org/10.1016/j.ctmp.2024.200158
Oza, P., Vyas, M. K., & Patani, P. (2024). Sulfur : A Natural Alternative To Synthetic Fungicides- A Review . European Journal of Analytical Chemistry, 19(1), 450–456.
Pal, A., Mahapatra, R. A., & Dey, J. (2014). Comparison of the gelation behaviour of N -substituted tetradecanamide amphiphiles in organic liquids : e ff ect of hydrogen-bonding ability of the head-group. Royal Society of Chemistry, 4, 7760–7765. https://doi.org/10.1039/c3ra46673f DOI: https://doi.org/10.1039/c3ra46673f
Patra, A. K., & Saxena, J. (2009). The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews, 22, 204–219. https://doi.org/10.1017/S0954422409990163 DOI: https://doi.org/10.1017/S0954422409990163
Pereira, A. G., Cassani, L., Garcia-Oliveira, P., Otero, P., Mansoor, S. S., Echave, J., Xiao, J., Simal-Gandara, J., & Prieto, M. A. (2023). Plant Alkaloids : Production , Extraction , and Potential Therapeutic Properties. Cham, Springer Nature Publishing. https://doi.org/10.1007/978-3-031-18587-8 DOI: https://doi.org/10.1007/978-3-031-18587-8_6
Phillips, S., Rao, M. R. K., Prabhu, K., Priya, M., Kalaivani, S., Ravi, A., & Dinakar, S. (2015). Preliminary GC-MS analysis of an Ayurvedic medicine " Kulathadi Kashayam. Journal of Chemical and Pharmaceutical Research, 7(9), 393–400.
Pole-evans, B. Y. I. B. (1919). Our aloes: their history, distribution, and cultivation. The Journal of the Botanical Society of South Africa, 11–16. https://archive.epa.gov/pesticides/biopesticides/web/html/frnotices_055803.html
Predescu, N. C., Papuc, C., Nicorescu, V., Gajaila, I., Goran, G. V., Petcu, C. D., & Stefan, G. (2016). The Influence of Solid-to-Solvent Ratio and Extraction Method on Total Phenolic Content , Flavonoid Content and Antioxidant Properties of Some Ethanolic Plant Extracts. Rev. Chim, 67(10), 1922–1927.
Rajeswaran, S., & Karthick, D. (2025). Phytomedicine Neophytadiene : Biological activities and drug development prospects. Phytomedicine, 143, 156872. DOI: https://doi.org/10.1016/j.phymed.2025.156872
Riaz, M., Khalid, R., Afzal, M., Anjum, F., Fatima, H., Zia, S., Rasool, G., Egbuna, C., Mtewa, A. G., Zedech, C., Muhammad, U., & Aslam, A. (2023). Phytobioactive compounds as therapeutic agents for human diseases : A review. Food Science & Nutrition, 11, 2500–2529. https://doi.org/10.1002/fsn3.3308 DOI: https://doi.org/10.1002/fsn3.3308
Rochfort, S., Parker, A. J., & Dunshea, F. R. (2008). Plant bioactives for ruminant health and productivity. Phytochemistry, 69, 299–322. https://doi.org/10.1016/j.phytochem.2007.08.017 DOI: https://doi.org/10.1016/j.phytochem.2007.08.017
Sabat, M., Patel, S., Shelake, P. S., & Priyadarshani, M. (2018). Assessment of physical properties of fresh aloe leaves and influence of drying temperature on physico-chemical properties of aloe vera. International Journal of Chemical Studies, 6(6), 2846–2850.
Sahin, N., Kula, I., & Erdogan, Y. (2006). INVESTIGATION OF ANTIMICROBIAL ACTIVITIES OF NONANOIC ACID DERIVATIVES. Fresenius Environmental Bulletin, 15(2), 26–29.
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). EXTRACTION , ISOLATION AND CHARACTERIZATION OF BIOACTIVE COMPOUNDS FROM PLANTS ’ EXTRACTS. African Journal of Traditional Complementary Alternative Medicine, 8(1), 1–10. DOI: https://doi.org/10.4314/ajtcam.v8i1.60483
Semwal, P., Painuli, S., Badoni, H., & Bacheti, R. K. (2018). Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A . Camus from Uttarakhand Himalaya. Clinical Phytoscience, 4(30), 1–6. DOI: https://doi.org/10.1186/s40816-018-0090-y
Setiawan, E., Yanuar, A., Riani, C., Budiharjo, A., Firdaus, Y. F. H., Phontree, K., Phuwapraisirisan, P., & Ramadhan, R. (2023). Phytochemical Profile, Free Radical Scavenging Activity, and Α-Glucosidase Inhibitory Activity of Freshwater Sponges Oncosclera Asiatica and Eunapius Carteri from East Java, Indonesia. Rasayan Journal of Chemistry, 16(4). https://doi.org/10.31788/RJC.2023.1648435 DOI: https://doi.org/10.31788/RJC.2023.1648435
Shin, B., & Park, W. (2018). Zoonotic Diseases and Phytochemical Medicines for Microbial Infections in Veterinary Science : Current State and Future Perspective. Frontiers in Veterinary Science, 5(July), 1–9. https://doi.org/10.3389/fvets.2018.00166 DOI: https://doi.org/10.3389/fvets.2018.00166
Sibanda, M., & Chiuta, T. (2018). Ethno-veterinary medicines and livestock production in mushagashe small scale commercial farming area , masvingo. Journal of Pharmaceutical and Biological Sciences, 6(2014), 96–103. https://doi.org/10.18231/2320-1924.2018.0015 DOI: https://doi.org/10.18231/2320-1924.2018.0013
Silva, R., Sousa, F., Damasceno, S., Carvalho, N., Silva, V., Oliveira, R., Sousa, D., Aragao, K., Barbosa, A., Freitas, R., & Medeiros, J. (2014). Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundamental & Clinical Phramacology, 28(4), 455–464. https://doi.org/10.1111/fcp.12049 DOI: https://doi.org/10.1111/fcp.12049
Singh, A., Singh, D., Sapna, S., & Nishu, M. (2023). A review on biosynthesis, regulation, and applications of terpenes and terpenoids. Trends in Phytochemical Research (TPR), 7(4), 228–245. https://doi.org/10.30495/tpr.2023.1989410.1358
Snyder, L. R. (1974). Classsification of the Solvent Properties of Common Liquids. Journal of Chromatography, 92, 223–230. DOI: https://doi.org/10.1016/S0021-9673(00)85732-5
Taj, T., Sultana, R. S., & Chakraborty, M. (2021). Phytol A Phytoconstituent , Its Chemistry And Pharmacological Actions. GIS Science Journal, 8(1), 395–403.
Tong, Z., He, W., Fan, X., & Guo, A. (2022). Biological Function of Plant Tannin and Its Application in Animal Health. Frontiers in Veterinary Science, 8(January), 1–7. https://doi.org/10.3389/fvets.2021.803657 DOI: https://doi.org/10.3389/fvets.2021.803657
Twaij, B. M., & Hasan, N. (2022). Bioactive Secondary Metabolites from Plant Sources : Types , Synthesis , and Their Therapeutic Uses. International Journal of Plant Biology, 13, 4–14. DOI: https://doi.org/10.3390/ijpb13010003
US EPA, O. of P. P. (2003). 2, 6-Diisopropylnaphthalene Biopesticide Registration Action Document. US Environmental Protection Agency Office of Pesticide Programs, PC Code 05. https://archive.epa.gov/pesticides/biopesticides/web/html/frnotices_055803.html
Vilhelmova-ilieva, N., Galabov, A. S., & Mileva, M. (2019). Tannins as Antiviral Agents. IntechOpen, Tannins-Structural Properties, Biological Properties and Current Knowledge, 41–52. DOI: https://doi.org/10.5772/intechopen.86490
Wang, T., Wang, Z., Chen, L., Zhang, S., & Lin, J. (2011). Isolation and characterization of (6S,9R) 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-benzof uran-2(4H)-one from Scutellaria barbata. Journal of Medicinal Plants Research, 5(4), 613–625.
White, C. (2023). Exploring the Effects of Aromatic Compounds on Medicinal Chemistry. Journal of Chemical and Pharmaceutical Research, 15(10), 10–11. https://doi.org/10.37532/0975-7384.2023.15(10).064.
Wink, M. (2012). Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites. Molecules, 17, 12771–12791. https://doi.org/10.3390/molecules171112771 DOI: https://doi.org/10.3390/molecules171112771
Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12), 10–14.
Yazıcı, A. (2024). The Strain-Dependent Antimicrobial and Antibiofilm effect of Cis and Trans - Vaccenic Acid against Pseudomonas Aeruginosa. Cumhuri Science Journal, 45(1), 1–7. DOI: https://doi.org/10.17776/csj.1341700
Yerlikaya, P. O., Coker-gurkan, A., Arisan, E. D., Mehdizadehtapeh, L., Uysal-onganer, P., & Coker-gurkan, A. (2023). The Use of Plant Steroids in Viral Disease Treatments : Current Status and Future Perspectives. European Journal of Biology, 82(1), 86–94. https://doi.org/10.26650/EurJBiol.2023.1130357 DOI: https://doi.org/10.26650/EurJBiol.2023.1130357
Yesilada, E., Bedir, E., Calis, I., Takaishi, Y., & Ohmoto, Y. (2005). Effects of triterpene saponins from Astragalus species on in vitro cytokine release. Journal of Ethnopharmacology, 96, 71–77. https://doi.org/10.1016/j.jep.2004.08.036 DOI: https://doi.org/10.1016/j.jep.2004.08.036
Youssef, K. M., & Mokhtar, S. M. (2014). Effect of Drying Methods on the Antioxidant Capacity , Color and Phytochemicals of Portulaca oleracea L . Leaves. Nutrition and Food Sciences, 4(322), 1–6. https://doi.org/10.4172/2155-9600.1000322 DOI: https://doi.org/10.4172/2155-9600.1000322
Downloads
Published
Data Availability Statement
All data generated during the study are included in this manuscript
Issue
Section
Categories
License
Copyright (c) 2025 Vimbai Gobvu, Dr Xavier Poshiwa, Zakio Makuvara, Professor Mudadi A. Benhura (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.