Anticancer Potential of Diazepam: Pharmacological Relevance and Clinical Evidence
DOI:
https://doi.org/10.71193/jpci.20250003Keywords:
Cancer, Diazepam, Literature review, Pharmacological relevanceAbstract
Cancer treatments such as chemotherapy, radiation, and targeted therapies often face challenges like severe side effects, drug resistance, and high costs. Repurposing existing medications is a promising strategy to improve treatment outcomes. Diazepam (DZP), a benzodiazepine commonly used for anxiety, has recently shown potential anticancer effects. This study explores the anticancer activity of DZP, focusing on its mechanisms of action, pharmacological relevance, immunotherapy, pharmacokinetics profile, toxicological profile, and clinical evidence through literature review from articles and journals in PubMed, Scopus, Google Scholar, and the Web of Science. DZP exerts antitumor effects by inducing apoptosis, inhibiting cell proliferation, and modulating oxidative stress and cell cycle dynamics against various cancers: blood cancer, brain cancer, breast cancer, colorectal cancer, glioblastoma, lung cancer, and skin cancer. DZP also demonstrates synergistic potential with conventional chemotherapeutic agents, enhancing their effectiveness while reducing patient anxiety and stress. Its pharmacokinetic profile, characterized by rapid absorption, extensive tissue distribution, and a prolonged half-life, supports its utility as a sustained anticancer agent. A significant gap in our investigation is the lack of clinical data on DZP; additional clinical evidence is required to validate its anticancer potential and establish it as an anticancer drug in the near future. Its sedative and CNS depressant effects necessitate cautious use, particularly in patients with hepatic or renal impairment. This review highlights the potential of DZP as a cost-effective, repurposed therapeutic option for cancer treatment. Additionally, it demonstrates how DZP may be a viable anticancer medication with a potential mechanism, maybe providing a better safety profile and less serious side effects than traditional treatments like chemotherapy.
Downloads
References
Abdelmohsen, U. R., Szesny, M., Othman, E. M., Schirmeister, T., Grond, S., Stopper, H., & Hentschel, U. (2012). Antioxidant and anti-protease activities of diazepinomicin from the sponge-associated Micromonospora strain RV115. Marine drugs, 10(10), 2208-2221. DOI: https://doi.org/10.3390/md10102208
Akbor, M. S., Bappi, M. H., Prottay, A. A. S., Haque, M. F., Al Hasan, M. S., Ahammed, S., ... & Islam, M. T. (2023). Synergistic hypnotic effects of sesamol and thymol possibly through GABAergic interaction pathway: in vivo and in silico studies. J. Biol. Regul. Homeost. Agents, 37(11), 6419-6435. DOI: https://doi.org/10.23812/j.biol.regul.homeost.agents.20233711.609
Aktar, A., Bhuia, S., Chowdhury, R., Ferdous, J., Khatun, M., Hasan, S. A., ... & Islam, M. T. (2024). An Insight of Plant Source, Toxicological Profile, and Pharmacological Activities of Iridoid Loganic Acid: A ComprehensiveReview. Chemistry & Biodiversity, 21(12), e202400874. DOI: https://doi.org/10.1002/cbdv.202400874
Al Hasan, M. S., Mia, E., Yana, N. T., Rakib, I. H., Bhuia, M. S., Chowdhury, R., ... & Islam, M. T. (2024). Allium cepa bioactive phytochemicals as potent ALK (Anaplastic lymphoma kinase) inhibitors and therapeutic agents against non-small cell lung cancer (NSCLC): A computational study. Pharmacological Research-Natural Products, 5, 100124. DOI: https://doi.org/10.1016/j.prenap.2024.100124
Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K., ... & de la Lastra, J. M. P. (2023). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10(4), 1367-1401. DOI: https://doi.org/10.1016/j.gendis.2022.02.007
Ansari, M. A., Chung, I. M., Rajakumar, G., Alzohairy, M. A., Alomary, M. N., Thiruvengadam, M., ... & Ahmad, N. (2020). Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy-a review. Current pharmaceutical design, 26(11), 1128-1137. DOI: https://doi.org/10.2174/1381612826666200116153912
Basu, A. K. (2018). DNA damage, mutagenesis and cancer. International journal of molecular sciences, 19(4), 970. DOI: https://doi.org/10.3390/ijms19040970
Bennett, J. P., Gupta, P., & Harris, C. M. (2019). Temazepam and its effects on oxidative stress in cancer cells. Journal of Clinical Oncology, 37(12), 2165-2171.
Bhuia, M. S., Chowdhury, R., Afroz, M., Akbor, M. S., Al Hasan, M. S., Ferdous, J., ... & Islam, M. T. (2025). Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chemistry & Biodiversity, e202401904. DOI: https://doi.org/10.1002/cbdv.202401904
Bhuia, M. S., Chowdhury, R., Sonia, F. A., Biswas, S., Ferdous, J., El‐Nashar, H. A., ... & Islam, M. T. (2024). Efficacy of Rotundic acid and its derivatives as promising natural anticancer triterpenoids: A literature‐based study. Chemistry & Biodiversity, 21(2), e202301492. DOI: https://doi.org/10.1002/cbdv.202301492
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., & Studer, G. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252-W258. DOI: https://doi.org/10.1093/nar/gku340
Bray, F., et al. (2018). Global cancer statistics 2018. CA: A Cancer Journal for Clinicians, 68(6), 394-424. DOI: https://doi.org/10.3322/caac.21492
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 74(3), 229-263. DOI: https://doi.org/10.3322/caac.21834
Camins, A., Diez-Fernandez, C., Pujadas, E., Camarasa, J., & Escubedo, E. (1995). A new aspect of the antiproliferative action of peripheral-type benzodiazepine receptor ligands. European journal of pharmacology, 272(2-3), 289-292. DOI: https://doi.org/10.1016/0014-2999(94)00652-N
Chen, D. S., & Mellman, I. (2018). Elements of cancer immunity and the cancer–immune set point. Nature, 541(7637), 321-330. DOI: https://doi.org/10.1038/nature21349
Chen, J., Ouyang, Y., Cao, L., Zhu, W., Zhou, Y., Zhou, Y., ... & Yan, G. (2013). Diazepam inhibits proliferation of human glioblastoma cells through triggering a G0/G1 cell cycle arrest. Journal of Neurosurgical Anesthesiology, 25(3), 285-291. DOI: https://doi.org/10.1097/ANA.0b013e31828bac6a
Chen, Y., Wang, Z., & Xu, Y. (2019). Diazepam modulates mitochondrial function in cancer cells: A potential therapeutic target. Molecular Cancer Research, 17(3), 456-467.
Chowdhury, R., Bhuia, M. S., Al Hasan, M. S., Hossain Snigdha, S., Afrin, S., Büsselberg, D., ... & Islam, M. T. (2024b). Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Science & Nutrition, 12(9), 6174-6205. DOI: https://doi.org/10.1002/fsn3.4318
Chowdhury, R., Bhuia, S., Rakib, A. I., Al Hasan, S., Shill, M. C., El-Nashar, H. A., ... & Islam, M. T. (2024a). Gigantol, a promising natural drug for inflammation: a literature review and computational based study. Natural Product Research, 1-17. DOI: https://doi.org/10.1080/14786419.2024.2340042
Donev, R. (Ed.). (2023). Control of Cell Cycle and Cell Proliferation. Elsevier.
Drljača, J., Popović, A., Bulajić, D., Stilinović, N., Vidičević Novaković, S., Sekulić, S., ... & Čapo, I. (2022). Diazepam diminishes temozolomide efficacy in the treatment of U87 glioblastoma cell line. CNS Neuroscience & Therapeutics, 28(9), 1447-1457. DOI: https://doi.org/10.1111/cns.13889
Eap, C. B., Besson, J., & Baumann, P. (2016). Pharmacokinetics and pharmacodynamics of diazepam. Current Drug Metabolism, 17(8), 680-688.
Falcón, C. R., Hurst, N. F., Vivinetto, A. L., López, P. H. H., Zurita, A., Gatti, G., ... & Roth, G. A. (2021). Diazepam impairs innate and adaptive immune responses and ameliorates experimental autoimmune encephalomyelitis. Frontiers in immunology, 12, 682612. DOI: https://doi.org/10.3389/fimmu.2021.682612
Ferdous, J., Bhuia, M. S., Chowdhury, R., Sheikh, S., Ansari, S. A., Bappi, M. H., & Islam, M. T. (2024). Modulatory Sedative Activity of Abrine on Diazepam in Thiopental Sodium Mediated Sleeping Mice: An In Vivo Approach with Receptor Binding Affinity of GABAergic Transmission. ChemistrySelect, 9(37), e202403725. DOI: https://doi.org/10.1002/slct.202403725
Florea, A. M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance, and induced side effects. Cancers, 3(1), 1351-1371. DOI: https://doi.org/10.3390/cancers3011351
García-Muñoz, L., et al. (2017). Stress management and chemotherapy outcomes. Psycho-Oncology, 26(9), 1412-1420.
Ghulam, S., & Iqbal, C. N. (2024). Cancer Immunotherapy: Harnessing the Immune System to Fight Cancer. International Journal of Advanced Engineering Technologies and Innovations, 1(4).
Gorman, A. M., O'Beirne, G. B., Regan, C. M., & Williams, D. C. (1989). Antiproliferative action of benzodiazepines in cultured brain cells is not mediated through the peripheral‐type benzodiazepine acceptor. Journal of neurochemistry, 53(3), 849-855. DOI: https://doi.org/10.1111/j.1471-4159.1989.tb11782.x
Greenblatt, D. J., & Lanza, F. L. (2014). Pharmacology and toxicology of benzodiazepines. Journal of Clinical Pharmacology, 54(6), 735-744.
Hadžiabdić, J., Kopjar, N., Želježić, D., Špirtović-Halilović, S., & Završnik, D. (2017). Cytogenotoxicity of Inclusion Complexes of Diazepam with 2-Hydroxypropyl-β-cyclodextrin. Drug Research, 67(11), 661-672. DOI: https://doi.org/10.1055/s-0043-115123
Hirsch, F. R., et al. (2016). New and emerging targeted treatments in advanced non-small-cell lung cancer. The Lancet, 388(10048), 1012-1024. DOI: https://doi.org/10.1016/S0140-6736(16)31473-8
Holohan, C., et al. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer, 13(10), 714-726. DOI: https://doi.org/10.1038/nrc3599
Horrobin, D. F. (1981). Diazepam as tumour promoter. The Lancet, 317(8214), 277-278. DOI: https://doi.org/10.1016/S0140-6736(81)92118-8
Jahan Oni, M. I., Bhuia, M. S., Chowdhury, R., Sheikh, S., Munshi, M. H., Hasan, M. S. A., & Islam, M. T. (2024). Botanical Sources, Pharmacokinetics, and Therapeutic Efficacy of Palmatine and Its Derivatives in the Management of Cancer: A Comprehensive Mechanistic Analysis. Journal of Food Biochemistry, 2024(1), 8843855. DOI: https://doi.org/10.1155/2024/8843855
Jia, Y., Zuo, Y., & Chen, P. (2016). Benzodiazepines as potential anticancer agents: Mechanistic insights and preclinical evaluations. Frontiers in Oncology, 6, 250
Jones, M. W., Taylor, S. S., & Foster, R. E. (2020). Lorazepam in cancer treatment: A review of its therapeutic benefits and limitations. Cancer Therapy Reviews, 15(2), 105-112.
Kaur, R., Bhardwaj, A., & Gupta, S. (2023). Cancer treatment therapies: traditional to modern approaches to combat cancers. Molecular biology reports, 50(11), 9663-9676. DOI: https://doi.org/10.1007/s11033-023-08809-3
Ke, J., Zhang, X., & Li, H. (2017). Diazepam induces apoptosis and inhibits cell proliferation in lung cancer cells. Journal of Cancer Research and Therapeutics, 13(5), 869-874. https://doi.org/10.4103/0973-1482.160273
Kern, K. L., Roberts, P., & Mitchell, T. (2018). Comparative CNS effects of benzodiazepines in cancer patients. Journal of Clinical Pharmacology, 58(3), 305-312.
Khan, M. A., Nadeem, M., & Ali, S. (2021). GABA-A receptor involvement in the anticancer effects of diazepam: Evidence from preclinical studies. Cancer Chemotherapy and Pharmacology, 87(1), 85-92.
Khan, M. H., Ahmed, D., Ahmad, T., & Iftikhar, H. (2024). Benzodiazepine derivatives for the treatment of neuropharmacological disorders and pain management: Docking investigations and in-vivo studies. Journal of Molecular Structure, 1303, 137567. DOI: https://doi.org/10.1016/j.molstruc.2024.137567
Kim, D. H., Lee, J. T., Lee, I. K., & Ha, J. H. (2008). Comparative anticancer effects of flavonoids and diazepam in cultured cancer cells. Biological and Pharmaceutical Bulletin, 31(2), 255-259. DOI: https://doi.org/10.1248/bpb.31.255
Kim, J. K., Lee, M. G., Lee, J. T., & Ha, J. H. (2009). In vitro Anti-proliferative Characteristics of Flavonoids and Diazepam on MDA-MB-231 Breast Cancer Cells. 생명과학회지, 19(8), 1009-1015. DOI: https://doi.org/10.5352/JLS.2009.19.8.1009
Koene, R. J., et al. (2016). Shared risk factors in cardiovascular disease and cancer. Circulation, 133(11), 1104-1114. DOI: https://doi.org/10.1161/CIRCULATIONAHA.115.020406
Kontos, I. S. (2024). Computational drug repurposing in Claudin-low breast cancer subtype.
Kotamkar, S., Jha, R. K., & Bankar, N. (2021). A brief research on Cancer. Journal of Pharmaceutical Research International, 33(38B), 323-329. DOI: https://doi.org/10.9734/jpri/2021/v33i38B32130
Landau, M., Weizman, A., Zoref-Shani, E., Beery, E., Wasseman, L., Landau, O., ... & Nordenberg, J. (1998). Antiproliferative and differentiating effects of benzodiazepine receptor ligands on B16 melanoma cells. Biochemical pharmacology, 56(8), 1029-1034. DOI: https://doi.org/10.1016/S0006-2952(98)00149-X
Lavička, J., Šarišský, M., Miroššay, A., Šulla, I., Mojziš, J., & Mirossay, L. (2001). Diazepam enhances etoposide‐induced cytotoxicity in U‐87 MG human glioma cell line. Fundamental & clinical pharmacology, 15(3), 201-207. DOI: https://doi.org/10.1046/j.1472-8206.2001.00030.x
Lazo, O. L. E., White, P. F., Lee, C., Eng, H. C., Matin, J. M., Lin, C., ... & Yumul, R. (2024). Use of herbal medication in the perioperative period: Potential adverse drug interactions. Journal of Clinical Anesthesia, 95, 111473. DOI: https://doi.org/10.1016/j.jclinane.2024.111473
Lee, S. W., Lee, J. T., Lee, M. G., Lee, H. W., Ahn, S. J., Lee, Y. J., ... & Ha, J. H. (2009). In vitro antiproliferative characteristics of flavonoids and diazepam on SNU-C4 colorectal adenocarcinoma cells. Journal of natural medicines, 63, 124-129. DOI: https://doi.org/10.1007/s11418-008-0300-x
Lee, T. Y., Kim, H. Y., & Yoon, D. S. (2017). The role of flumazenil in managing diazepam toxicity in cancer patients. Cancer Therapy, 14(2), 126-133.
Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117-1134. DOI: https://doi.org/10.1016/j.cell.2010.06.011
López-Gómez, C., et al. (2016). Diazepam as a novel anticancer agent. Frontiers in Pharmacology, 7, 394.
López-Lázaro, M. (2018). The stem cell division theory of cancer. Critical Reviews in Oncology/Hematology, 123, 95-113. DOI: https://doi.org/10.1016/j.critrevonc.2018.01.010
Marino, M., La Torre, G., & Rossi, A. (2019). Hepatic metabolism of benzodiazepines and associated risks in cancer therapy. Pharmacology Research & Perspectives, 7(6), e00539.
Matthews, H. K., Bertoli, C., & de Bruin, R. A. (2022). Cell cycle control in cancer. Nature reviews Molecular cell biology, 23(1), 74-88. DOI: https://doi.org/10.1038/s41580-021-00404-3
Meredith, K. L., Hoffe, S. E., & Shibata, D. (2009). The multidisciplinary management of rectal cancer. Surgical Clinics of North America, 89(1), 177-215. DOI: https://doi.org/10.1016/j.suc.2008.09.021
Miccoli, L., Poirson-Bichat, F., Sureau, F., Gonçalves, R. B., Bourgeois, Y., Dutrillaux, B., ... & Oudard, S. (1998). Potentiation of lonidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment. JNCI: Journal of the National Cancer Institute, 90(18), 1400-1406. DOI: https://doi.org/10.1093/jnci/90.18.1400
Minotti, G., et al. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56(2), 185-229. DOI: https://doi.org/10.1124/pr.56.2.6
Montégut, L., Derosa, L., Messaoudene, M., Chen, H., Lambertucci, F., Routy, B., ... & Kroemer, G. (2024). Benzodiazepines compromise the outcome of cancer immunotherapy. Oncoimmunology, 13(1), 2413719. DOI: https://doi.org/10.1080/2162402X.2024.2413719
Muench, J., & Hamer, A. M. (2010). Diazepam: Pharmacology and therapeutic uses. American Family Physician, 82(6), 659-665.
Müller, J., Schmidt, F., & Pérez, D. (2020). Diazepam and its potential in cancer treatment: A clinical overview. Journal of Cancer Research and Therapy, 18(4), 1342-1349.
O'Brien, M. A., & Kirby, R. (2008). Apoptosis: A review of pro‐apoptotic and anti‐apoptotic pathways and dysregulation in disease. Journal of veterinary emergency and critical care, 18(6), 572-585. DOI: https://doi.org/10.1111/j.1476-4431.2008.00363.x
Ostermann, T., Luedde, M., & Schröder, M. (2015). Pharmacokinetics and therapeutic implications of diazepam. Journal of Clinical Pharmacology, 55(12), 1270-1276.
Paoli, P., Giannoni, E., & Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 3481-3498. DOI: https://doi.org/10.1016/j.bbamcr.2013.06.026
Patel, S., Verma, A., & Sharma, A. (2021). Diazepam in cancer therapy: Potential and risks. International Journal of Cancer Research, 56(2), 87-95.
Pons, M., Martínez-Álvarez, M., & González, J. (2016). Diazepam distribution in cancerous tissues. Cancer Chemotherapy and Pharmacology, 78(2), 217-224.
Ruishi, X., Linyi, X., Yunfan, B., Wenbo, Y., Xiaoying, Z., Xiaoxue, F., ... & Haoming, L. (2024). New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Frontiers in Immunology, 15, 1456405. DOI: https://doi.org/10.3389/fimmu.2024.1456405
Sadeghi, N., & Asgarian-Omran, H. (2015). Anticancer properties of diazepam and its effects on oxidative stress. Toxicology Letters, 231(2), 119-123.
Sathiavelu, P., Akshaya, P., & Vidhya, S. (2018). Diazepam: Mechanism of action and clinical uses. Indian Journal of Pharmacology, 50(4), 157-162.
Sewell, R. A., Ranganathan, M., & David, H. (2018). The pharmacokinetics and toxicity of diazepam. Toxicology Research, 7(1), 9-15.
Shin, H. R., Jang, Y., Shin, Y. W., Chu, K., Lee, S. K., & Lee, S. T. (2021). High-Dose Diazepam Controls Severe Dyskinesia in Anti-NMDA Receptor Encephalitis. Neurology. Clinical practice, 11(4), e480–e487. https://doi.org/10.1212/CPJ.0000000000001001 DOI: https://doi.org/10.1212/CPJ.0000000000001001
Siegel, R. L., et al. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7-30. DOI: https://doi.org/10.3322/caac.21590
Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: a cancer journal for clinicians, 74(1), 12-49. DOI: https://doi.org/10.3322/caac.21820
Sieghart, W., & Sperk, G. (2002). Subunit composition, distribution, and function of GABA-A receptor subtypes. Current Topics in Medicinal Chemistry, 2(8), 795-816. DOI: https://doi.org/10.2174/1568026023393507
Simpson, R. M., & D’Angelo, J. (2017). Toxicology of diazepam: A clinical review. Toxicology Reports, 4, 133-138.
Singh, P., Dubey, A., & Mankar, V. (2017). Diazepam and its role in oxidative stress modulation. International Journal of Cancer Research, 45(1), 67-75.
Smith, R. S., Zhang, J., & White, T. A. (2018). Diazepam and midazolam: A comparative study of their synergistic anticancer effects. Cancer Chemotherapy and Pharmacology, 81(5), 1011-1018.
Sneyd, J. R., Gambus, P. L., & Rigby-Jones, A. E. (2021). Current status of perioperative hypnotics, role of benzodiazepines, and the case for remimazolam: a narrative review. British Journal of Anaesthesia, 127(1), 41-55. DOI: https://doi.org/10.1016/j.bja.2021.03.028
Sung, H., et al. (2021). Global cancer statistics 2020. CA: A Cancer Journal for Clinicians, 71(3), 209-249. DOI: https://doi.org/10.3322/caac.21660
Szewc, M., Radzikowska-Bűchner, E., Wdowiak, P., Kozak, J., Kuszta, P., Niezabitowska, E., ... & Masłyk, M. (2022). MSCs as tumor-specific vectors for the delivery of anticancer agents—a potential therapeutic strategy in cancer diseases: perspectives for quinazoline derivatives. International Journal of Molecular Sciences, 23(5), 2745. DOI: https://doi.org/10.3390/ijms23052745
Thompson, A. R., Perez, A. E., & Clarke, D. P. (2020). Buspirone's role in alleviating benzodiazepine-induced side effects in cancer therapy. Oncology Pharmacology, 22(4), 171-178.
Tison, F., Andrès, E., & D’Incan, M. (2012). Diazepam pharmacokinetics: Effects of liver metabolism and half-life. European Journal of Clinical Pharmacology, 68(5), 527-533.
Tseng, P., Wang, Z., & Lee, C. (2019). Pharmacological properties of diazepam in cancer therapy. Journal of Molecular Pharmacology, 41(3), 89-98.
Varoni, E. M., & Lodi, G. (2019). Anticancer effects of diazepam: In vitro evidence and mechanisms. Oncology Reports, 42(1), 39-47.
Velázquez, J. V., et al. (2020). Cytotoxic effects of diazepam on cancer cell lines. International Journal of Oncology, 57(3), 276-284.
Wajed, S. A., Laird, P. W., & DeMeester, T. R. (2001). DNA methylation: an alternative pathway to cancer. Annals of surgery, 234(1), 10-20. DOI: https://doi.org/10.1097/00000658-200107000-00003
Wang, Z., et al. (2018). Diazepam modulates calcium signaling in cancer cells. Molecular Cancer Research, 16(5), 717-727.
Warlick IV, H., Leon, L., Patel, R., Filoramo, S., Knipe, R., Joubran, E., ... & Rey, J. (2023). Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model. Molecular Biology Reports, 50(2), 1765-1784. DOI: https://doi.org/10.1007/s11033-022-08110-9
Yang, L., Lee, K. R., & Kim, H. J. (2021). Buspirone’s role in enhancing the anticancer activity of benzodiazepines: Preclinical insights. Pharmacology Research, 64(8), 650-657.
Downloads
Published
Data Availability Statement
Data will be made available on request.
Issue
Section
Categories
License
Copyright (c) 2025 Md. Mizan, Noshin Tasnim Yana, Ali Mohamod Wasaf Hasan, Mohammed Burhan Uddin, Md Abu Sayeed, Akayed Hasan, Shafayatun Nahar Tinu, Imam Hossen Rakib, Md. Sakib Al Hasan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.