Anticancer Potential of Oleandrin: Preclinical Mechanisms, Botanical Origins, and Pharmacokinetic Insights

Authors

DOI:

https://doi.org/10.71193/jpci.20250010

Keywords:

Anticancer, apoptosis, cell proliferation, cytotoxicity, oleandrin

Abstract

Oleandrin (OLD) is a lipid-soluble cardiac glycoside derived mainly from the leaves of Nerium oleander (Apocynaceae), traditionally used in herbal medicine. Among the various parts of the plant, the leaves contain the highest concentration of OLD. Red-flowered varieties contain higher levels of cardiac glycosides. Although Thevetia peruviana (yellow oleander) belongs to the same family, it does not produce OLD. Recent studies show that OLD has significant anticancer potential against various cancers such as breast, prostate, lung, colon, pancreatic, endometrial cancers, melanoma, and osteosarcoma. It works by inducing apoptosis (programmed cell death) via caspase activation, arresting the cell cycle, reducing oxidative stress, and lowering mitochondrial membrane potential. These actions are regulated by key signaling pathways including Wnt/β-catenin, phosphatidylinositol 3-kinase/protein kinase B/nuclear factor-kappa B (PI3K/Akt/NF-κB), and extracellular signal-regulated kinase (ERK). Pharmacokinetic studies reveal that OLD is rapidly absorbed through the oral mucosa and gastrointestinal tract, crosses the blood-brain barrier, and has a half-life of about 2.3 hours. It is mainly metabolized in the liver and intestine, and excreted mostly through feces (66%) and partly through urine (8%). Due to its strong anticancer mechanisms, OLD shows promise as a novel anticancer agent. However, further in vivo studies and clinical trials are necessary to confirm its therapeutic efficacy and safety in humans. Future research should also focus on optimizing its pharmacokinetic properties and minimizing toxicity to enable its transition from experimental models to clinical application.

Downloads

Download data is not yet available.

References

Bao, Z., Tian, B., Wang, X., Feng, H., Liang, Y., Chen, Z., & Ying, S. (2016). OLD induces DNA damage responses in cancer cells by suppressing the expression of Rad51. Oncotarget, 7(37), 59572. https://doi.org/10.18632/oncotarget.10726

Celik, F. S., Gunes, C. E., & Kurar, E. (2023). Cardiac Glycoside OLD Suppresses EMT Ability in Endometrial Carcinoma Cells. International Journal of Molecular and Cellular Medicine, 12(3), 220. https://doi.org/10.22088/IJMCM.BUMS.12.3.220

Chowdhury, R., Bhuia, M. S., Wilairatana, P., Afroz, M., Hasan, R., Ferdous, J., ... & Islam, M. T. (2024). An insight into the anticancer potentials of lignan arctiin: A comprehensive review of molecular mechanisms. Heliyon. DOI: 10.1016/j.heliyon.2024.e32899

de Boer, R. A., Meijers, W. C., van der Meer, P., & van Veldhuisen, D. J. (2019). Cancer and heart disease: associations and relations. European journal of heart failure, 21(12), 1515-1525. https://doi.org/10.1002/ejhf.1539

Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., ... & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine, 9, 20503121211034366. https://doi.org/10.1177/20503121211034366

Eity, T. A., Bhuia, M. S., Chowdhury, R., Ahmmed, S., Sheikh, S., Akter, R., & Islam, M. T. (2024). Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono‐or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. Journal of Tropical Medicine, 2024(1),5594462.https://doi.org/10.1155/2024/5594462

Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4),778789.https://doi.org/10.1002/ijc.33588

Gao, Y., Shao, J., Jiang, Z., Chen, J., Gu, S., Yu, S., & Jia, L. (2014). Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug discovery today, 19(3),326340.https://doi.org/10.1016/j.drudis.2013.11.020

Garg, S. K., Maurer, H., Reed, K., & Selagamsetty, R. (2014). Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes, Obesity and Metabolism, 16(2), 97-110. https://doi.org/10.1111/dom.12124

Huang, M., Lu, J. J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural products and bioprospecting, 11(1), 5-13. https://doi.org/10.1007/s13659-020-00293-7

Jahan Oni, M. I., Bhuia, M. S., Chowdhury, R., Sheikh, S., Munshi, M. H., Hasan, M. S. A., & Islam, M. T. (2024). Botanical Sources, Pharmacokinetics, and Therapeutic Efficacy of Palmatine and Its Derivatives in the Management of Cancer: A Comprehensive Mechanistic Analysis. Journal of Food Biochemistry, 2024(1), 8843855. https://doi.org/10.1155/2024/8843855

Jelic, M. D., Mandic, A. D., Maricic, S. M., & Srdjenovic, B. U. (2021). Oxidative stress and its role in cancer. Journal of cancer research and therapeutics, 17(1), 22-28. DOI: 10.4103/jcrt.JCRT_862_16

Jia, Y. M. (2014). Research progress on pharmacokinetics of cardiac glycosides. Zhongcaoyao, 3472-3477.

Karawya, M. S., Balbaa, S. I., & Khayyal, S. E. (1973). Estimation of cardenolides in Nerium oleander. Planta Medica, 23(01), 70-73. DOI: 10.1055/s-0028-1099414

Khan, I., Kant, C., Sanwaria, A., & Meena, L. (2010). Acute cardiac toxicity of nerium oleander/indicum poisoning (kaner) poisoning. Heart views, 11(3), 115-116. DOI: 10.4103/1995-705X.76803

Ko, Y. S., Rugira, T., Jin, H., Park, S. W., & Kim, H. J. (2018). OLD and its derivative odoroside A, both cardiac glycosides, exhibit anticancer effects by inhibiting invasion via suppressing the STAT-3 signaling pathway. International journal of molecular sciences, 19(11), 3350. https://doi.org/10.3390/ijms19113350

Kumar, A., De, T., Mishra, A., & Mishra, A. K. (2013). OLD: A cardiac glycosides with potent cytotoxicity. Pharmacognosy reviews, 7(14), 131. doi: 10.4103/0973-7847.120512

Langford, S. D., & Boor, P. J. (1996). Oleander toxicity: an examination of human and animal toxic exposures. Toxicology, 109(1), 1-13. https://doi.org/10.1016/0300-483X(95)03296-R

Li, X., Wang, D., Sui, C., Meng, F., Sun, S., Zheng, J., & Jiang, Y. (2020). OLD induces apoptosis via activating endoplasmic reticulum stress in breast cancer cells. Biomedicine & Pharmacotherapy, 124, 109852. doi:10.1016/j.biopha.2020.109852

Ma, Y., Zhu, B., Liu, X., Yu, H., Yong, L., Liu, X., ... & Liu, Z. (2015). Inhibition of OLD on the proliferation and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway. Journal of Experimental & Clinical Cancer Research, 34, 1-12. https://doi.org/10.1186/s13046-015-0232-8

Newman, R. A., Kondo, Y., Yokoyama, T., Dixon, S., Cartwright, C., Chan, D., ... & Yang, P. (2007). Autophagic cell death of human pancreatic tumor cells mediated by OLD, a lipid-soluble cardiac glycoside. Integrative cancer therapies, 6(4), 354-364. https://doi.org/10.1177/1534735407309623

Newman, R. A., Yang, P., Hittelman, W. N., Lu, T., Ho, D. H., Ni, D., ... & Addington, C. (2006). OLD-mediated oxidative stress in human melanoma cells. J Exp Ther Oncol, 5(3), 167-181.

Ni, D., Madden, T. L., Johansen, M., Felix, E., Ho, D. H., & Newman, R. A. (2002). Murine pharmacokinetics and metabolism of OLD, a cytotoxic component of Nerium oleander. Journal of Experimental Therapeutics and Oncology, 2(5), 278-285. https://doi.org/10.1046/j.1359-4117.2002.01052.x

Pan, L., Zhang, Y., Zhao, W., Zhou, X., Wang, C., & Deng, F. (2017). The cardiac glycoside OLD induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer chemotherapy and pharmacology, 80, 91-100. https://doi.org/10.1007/s00280-017-3337-2

Prendergast, G. C., Metz, R., & Muller, A. J. (2010). Towards a genetic definition of cancer-associated inflammation: role of the IDO pathway. The American journal of pathology, 176(5), 2082-2087. https://doi.org/10.2353/ajpath.2010.091173

Reddy, D., Kumavath, R., Barh, D., Azevedo, V., & Ghosh, P. (2020). Anticancer and antiviral properties of cardiac glycosides: a review to explore the mechanism of actions. Molecules, 25(16), 3596. https://doi.org/10.3390/molecules25163596

Ruiz-Garcia, A., Bermejo, M., Moss, A., & Casabo, V. G. (2008). Pharmacokinetics in drug discovery. Journal of pharmaceutical sciences, 97(2), 654-690. https://doi.org/10.1002/jps.21009

Saini, A., Kumar, M., Bhatt, S., Saini, V., & Malik, A. (2020). Cancer causes and treatments. Int J Pharm Sci Res, 11(7), 3121-3134. http://dx.doi.org/10.13040/IJPSR.0975-8232.11(7).3121-34

Sjöström, J., & Bergh, J. (2001). How apoptosis is regulated, and what goes wrong in cancer. Bmj, 322(7301), 1538-1539. https://doi.org/10.1136/bmj.322.7301.1538

Smith, J. A., Madden, T., Vijjeswarapu, M., & Newman, R. A. (2001). Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, OLD. Biochemical pharmacology, 62(4), 469-472. https://doi.org/10.1016/S0006-2952(01)00690-6

Talevi, A., & Bellera, C. L. (2024). Drug excretion. In ADME Processes in Pharmaceutical Sciences: Dosage, Design, and Pharmacotherapy (pp. 111-128). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-50419-8_6

Yu, H., Jove, R. The STATs of cancer — new molecular targets come of age. Nat Rev Cancer 4, 97–105 (2004). https://doi.org/10.1038/nrc1275

Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2016). Current challenges in cancer treatment. Clinical therapeutics, 38(7), 1551-1566. https://doi.org/10.1016/j.clinthera.2016.03.026

Downloads

Published

07/20/2025

Data Availability Statement

Data will be made available on request

How to Cite

Rahman, M. ., Shadin, M. ., Jakia Sultana, Hosain, M. S. ., & Oni , M. I. J. . (2025). Anticancer Potential of Oleandrin: Preclinical Mechanisms, Botanical Origins, and Pharmacokinetic Insights. Journal of Phytochemical Insights, 1(02), 1-7. https://doi.org/10.71193/jpci.20250010