Sub-acute Cinnamaldehyde rectal administration induces non-toxic effects in neurological and physiological responses in C57BL/6 mice

Authors

  • Emanuel Bottino Cátedra de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Córdoba, Argentina Author https://orcid.org/0000-0002-0353-7183
  • Yesica Paola Zaio Cátedra de Química Orgánica y Productos Naturales- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina Author https://orcid.org/0009-0001-6541-834X
  • Natalia A. Saavedra Larralde Cátedra de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Córdoba, Argentina Author https://orcid.org/0009-0006-6681-8296
  • Victoria B. Occhieppo Departamento de Farmacología Otto Orsingher, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Córdoba, Argentina Author https://orcid.org/0000-0002-9325-3458
  • M. Paula Zunino Cátedra de Química Orgánica y Productos Naturales- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina Author https://orcid.org/0000-0002-5320-0036
  • Andres A. Ponce Cátedra de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Córdoba, Argentina; Cátedra de Fisiología Humana, Dpto. Académico de Ciencias de la Salud y Educación, Universidad Nacional de la Rioja. La Rioja, Argentina Author https://orcid.org/0000-0002-3322-9456

DOI:

https://doi.org/10.71193/jpci.20250015

Keywords:

Trans-Cinnamaldehyde, intra-rectal, functional observational battery, toxicity, mice

Abstract

Trans-Cinnamaldehyde, the main component of cinnamon essential oil, is widely used in food and traditional herbal medicine. The objective of this study was to investigate the subacute toxic effects of trans-Cinnamaldehyde (Cinn; 2000 mg/kg/day) administered intrarectally for 15 consecutive days in male C57BL/6 mice, a route of administration not previously evaluated in this model. Mice were monitored for survival, preclinical signs, and behavior. Neurotoxic potential was assessed using a functional observational battery (FOB), ambulatory activity, and spontaneous locomotion. Physiological parameters included sperm motility, liver function, relative liver weight, and macroscopic and microscopic liver morphology. Food and water intake were recorded and considered in the analysis. Subacute intrarectal administration of Cinn did not produce neurotoxic, hepatotoxic, or reproductive adverse effects. The treatment was well tolerated and associated with reduced body weight gain without changes in food or water intake. In conclusion, these results support the safety of Cinn and suggest potential applications in metabolic research, particularly in the context of obesity.

Downloads

Download data is not yet available.

References

Arruda, D. C., Miguel, D. C., Yokoyama-Yasunaka, J. K., Katzin, A. M., & Uliana, S. R. (2009). Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomedicine & Pharmacotherapy, 63(9), 643–649. https://doi.org/10.1016/j.biopha.2009.02.004 DOI: https://doi.org/10.1016/j.biopha.2009.02.004

Baiardi, G., Ruiz, R. D., Fiol de Cuneo, M., Ponce, A. A., Lacuara, J. L., & Vincent, L. (1997). Differential effects of pharmacologically generated reactive oxygen species upon functional activity of epididymal mouse spermatozoa. Canadian Journal of Physiology and Pharmacology, 75(3), 173–178. https://doi.org/10.1139/y97-015 DOI: https://doi.org/10.1139/y97-015

Bhattacharjee, S., Rana, T., & Sengupta, A. (2007). Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pacific Journal of Cancer Prevention, 8(4), 578–582. https://europepmc.org/article/med/18260732

Bickers, D., Calow, P., Greim, H., Hanifin, J. M., Rogers, A. E., Saurat, J. H., Sipes, I. G., Smith, R. L., & Tagami, H. (2005). Review. Food and Chemical Toxicology, 43(6), 799–836. https://doi.org/10.1016/j.fct.2004.09.013 DOI: https://doi.org/10.1016/j.fct.2004.09.013

Brenes, J. C., Rodríguez, O., & Fornaguera, J. (2008). Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity, and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacology Biochemistry and Behavior, 89(1), 85–93. https://doi.org/10.1016/j.pbb.2007.11.004 DOI: https://doi.org/10.1016/j.pbb.2007.11.004

Camacho, S., Michlig, S., de Senarclens-Bezençon, C., Meylan, J., Meystre, J., Pezzoli, M., Markram, H., et al. (2015). Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Scientific Reports, 5, 7919. https://doi.org/10.1038/srep07919 DOI: https://doi.org/10.1038/srep07919

Carrascosa, R. E., Ponzio, M. F., & Lacuara, J. L. (2001). Storage of Chinchilla lanigera semen at 4 °C for 24 or 72 h with two different cryoprotectants. Cryobiology, 42(4), 301–306. https://doi.org/10.1006/cryo.2001.2326 DOI: https://doi.org/10.1006/cryo.2001.2326

Dorri, M., Hashemitabar, S., & Hosseinzadeh, H. (2018). Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug and Chemical Toxicology, 41(3), 338–351. https://doi.org/10.1080/01480545.2017.1417995 DOI: https://doi.org/10.1080/01480545.2017.1417995

Dundar, E., Gurlek Olgun, E., Isiksoy, S., Kurkcuoglu, M., Baser, K. H. C., & Bal, C. (2008). The effects of intra-rectal and intra-peritoneal application of Origanum onites L. essential oil on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in the rat. Experimental and Toxicologic Pathology, 59(6), 399–408. https://doi.org/10.1016/j.etp.2007.11.009 DOI: https://doi.org/10.1016/j.etp.2007.11.009

Etaee, F., Komaki, A., Faraji, N., Rezvani-Kamran, A., Komaki, S., Hasanein, P., Taheri, M., & Omidi, G. (2019). The effects of cinnamaldehyde on acute or chronic stress-induced anxiety-related behavior and locomotion in male mice. Stress, 22(3), 358–365. https://doi.org/10.1080/10253890.2019.1567710 DOI: https://doi.org/10.1080/10253890.2019.1567710

Faddladdeen, K. A. (2022). The possible protective and therapeutic effects of ginger and cinnamon on the testis and cauda epididymis of streptozotocin-induced diabetic rats: Histological and biochemical studies. Saudi Journal of Biological Sciences, 29(12), 4161–4172. https://doi.org/10.1016/j.sjbs.2022.09.025 DOI: https://doi.org/10.1016/j.sjbs.2022.103452

FAO & WHO. (2025). Pesticide residues in food: Report 2024 – Joint FAO/WHO meeting on pesticide residues. Rome. https://doi.org/10.4060/cd5918en DOI: https://doi.org/10.4060/cd5918en

Figueiredo, C. S. S., Silva, P. V. O., Saminez, W. F. S., Diniz, R. M., Mendonça, J. S. P., Silva, L. S., Paiva, M. Y. M., et al. (2023). Immunomodulatory effects of cinnamaldehyde in Staphylococcus aureus-infected wounds. Molecules, 28(3), 1204. https://doi.org/10.3390/molecules28031204 DOI: https://doi.org/10.3390/molecules28031204

French, K. A., & Kristan, W. B. (1994). Cell-cell interactions that modulate neuronal development in the leech. Journal of Neurobiology, 25(6), 640–651. https://doi.org/10.1002/neu.480250606 DOI: https://doi.org/10.1002/neu.480250606

Gandhi, G. R., Hillary, V. E., Antony, P. J., Zhong, L. L. D., Yogesh, D., Krishnakumar, N. M., Ceasar, S. A., & Gan, R. Y. (2023). A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2023.2170320 DOI: https://doi.org/10.1080/10408398.2023.2170320

Gauvin, D. V., Yoder, J. D., Holdsworth, D. L., Harter, M. L., May, J. R., Cotey, N., Dalton, J. A., & Baird, T. J. (2016). The standardized functional observational battery: Its intrinsic value remains in the instrument of measure: The rat. Journal of Pharmacological and Toxicological Methods, 82, 90–108. https://doi.org/10.1016/j.vascn.2016.08.001 DOI: https://doi.org/10.1016/j.vascn.2016.08.001

Gowder, S. J. T., & Halagowder, D. (2010). Cinnamaldehyde induces behavioral and biochemical changes in the male albino Wistar rat. Journal of Medical Sciences, 3(2), 101–109.

Hébert, C. D., Yuan, J., & Dieter, M. P. (1994). Comparison of the toxicity of cinnamaldehyde when administered by microencapsulation in feed or by corn oil gavage. Food and Chemical Toxicology, 32(12), 1107–1115. https://doi.org/10.1016/0278-6915(94)90126-0 DOI: https://doi.org/10.1016/0278-6915(94)90126-0

Hubrecht, R. C., & Carter, E. (2019). The 3Rs and humane experimental technique: Implementing change. Animals, 9(10), 754. https://doi.org/10.3390/ani9100754 DOI: https://doi.org/10.3390/ani9100754

Hul, M. V., Geurts, L., Plovier, H., Druart, C., Everard, A., Ståhlman, M., Rhimi, M., et al. (2018). Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology-Endocrinology and Metabolism, 314(4), E334–E352. https://doi.org/10.1152/ajpendo.00107.2017 DOI: https://doi.org/10.1152/ajpendo.00107.2017

Irwin, S. (1968). Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia, 13(3), 222–257. https://doi.org/10.1007/bf00401402 DOI: https://doi.org/10.1007/BF00401402

Jiao, P., An, Y., Wu, S., Li, H., & Li, G. (2024). Cinnamaldehyde attenuates the expression of IBA1 and GFAP to inhibit glial cell activation and inflammation in the MPTP-induced acute Parkinson's disease model. Parkinson’s Disease, 2024, 9973140. https://doi.org/10.1155/padi/9973140 DOI: https://doi.org/10.1155/padi/9973140

Karunajeewa, H. A., Manning, L., Mueller, I., Ilett, K. F., & Davis, T. M. E. (2007). Rectal administration of artemisinin derivatives for the treatment of malaria. JAMA, 297(21), 2381–2390. https://doi.org/10.1001/jama.297.21.2381 DOI: https://doi.org/10.1001/jama.297.21.2381

Kempinas, W. D. G., Suarez, J. D., Roberts, N. L., Strader, L., Ferrell, J., Goldman, J. M., & Klinefelter, G. R. (1998). Rat epididymal sperm quantity, quality, and transit time after guanethidine-induced sympathectomy. Biology of Reproduction, 59(4), 890–896. https://doi.org/10.1095/biolreprod59.4.890 DOI: https://doi.org/10.1095/biolreprod59.4.890

Liu, Y., Wang, H., Fu, R., Zhang, L., Liu, M. Y., Cao, W., Wu, R., & Wang, S. (2023). Preparation and characterization of cinnamon essential oil extracted by deep eutectic solvent and its microencapsulation. Journal of Food Measurement and Characterization, 17(1), 664–673. https://doi.org/10.1007/s11694-022-01653-2 DOI: https://doi.org/10.1007/s11694-022-01653-2

Lu, S., Obianom, O. N., & Ai, Y. (2018). Novel cinnamaldehyde-based aspirin derivatives for the treatment of colorectal cancer. Bioorganic & Medicinal Chemistry Letters, 28(17), 2869–2874. https://doi.org/10.1016/j.bmcl.2018.07.032 DOI: https://doi.org/10.1016/j.bmcl.2018.07.032

Mahmoudi, S., Farshid, A. A., Tamaddonfard, E., Imani, M., & Noroozinia, F. (2022). Behavioral, histopathological, and biochemical evaluations on the effects of cinnamaldehyde, naloxone, and their combination in morphine-induced cerebellar toxicity. Drug and Chemical Toxicology, 45(1), 250–261. https://doi.org/10.1080/01480545.2019.1681446 DOI: https://doi.org/10.1080/01480545.2019.1681446

McLennan, I. S., & Taylor-Jeffs, J. (2004). The use of sodium lamps to brightly illuminate mouse houses during their dark phases. Laboratory Animals, 38(4), 384–392. https://doi.org/10.1258/0023677041958927 DOI: https://doi.org/10.1258/0023677041958927

Mereto, E., Brambilla-Campart, G., Ghia, M., Martelli, A., & Brambilla, G. (1994). Cinnamaldehyde-induced micronuclei in rodent liver. Mutation Research/Genetic Toxicology, 322(1), 1–8. https://doi.org/10.1016/0165-1218(94)90027-2 DOI: https://doi.org/10.1016/0165-1218(94)90027-2

Mo, K., Yu, W., Li, J., Zhang, Y., Xu, Y., Huang, X., & Ni, H. (2023). Dietary supplementation with a microencapsulated complex of thymol, carvacrol, and cinnamaldehyde improves intestinal barrier function in weaning piglets. Journal of the Science of Food and Agriculture, 103(4), 1994–2003. https://doi.org/10.1002/jsfa.12322 DOI: https://doi.org/10.1002/jsfa.12322

Mousavi, S. M., Rahmani, J., Kord-Varkaneh, H., Sheikhi, A., Larijani, B., & Esmaillzadeh, A. (2020). Cinnamon supplementation positively affects obesity: A systematic review and dose–response meta-analysis of randomized controlled trials. Clinical Nutrition, 39(1), 123–133. https://doi.org/10.1016/j.clnu.2019.02.017 DOI: https://doi.org/10.1016/j.clnu.2019.02.017

Muhammad, D. R. A., & Dewettinck, K. (2017). Cinnamon and its derivatives as potential ingredient in functional food—A review. International Journal of Food Properties, 20, 2237–2263. https://doi.org/10.1080/10942912.2017.1369102 DOI: https://doi.org/10.1080/10942912.2017.1369102

OECD. (2008). OECD annual report 2008. https://doi.org/10.1787/annrep-2008-en DOI: https://doi.org/10.1787/annrep-2008-en

Olivier, K., & Karanth, S. (2020). Toxicology testing: In vivo mammalian models. In An introduction to interdisciplinary toxicology: From molecules to man (pp. 487–506). Academic Press. https://doi.org/10.1016/B978-0-12-813602-7.00035-1 DOI: https://doi.org/10.1016/B978-0-12-813602-7.00035-1

Pernold, K., Rullman, E., & Ulfhake, B. (2023). Bouts of rest and physical activity in C57BL/6J mice. PLoS One, 18(6), e0280416. https://doi.org/10.1371/journal.pone.0280416 DOI: https://doi.org/10.1371/journal.pone.0280416

SoukhakLari, R., Borhani-Haghighi, A., Farsadrooh, A., Moezi, L., Pirsalami, F., Kazeruni, A., Safari, A., & Moosavi, M. (2019). The effect of cinnamaldehyde on passive avoidance memory and hippocampal Akt, ERK, and GSK-3β in mice. European Journal of Pharmacology, 172530. https://doi.org/10.1016/j.ejphar.2019.172530 DOI: https://doi.org/10.1016/j.ejphar.2019.172530

Subash-Babu, P., Alshatwi, A. A., & Ignacimuthu, S. (2014). Beneficial antioxidative and antiperoxidative effect of cinnamaldehyde protect streptozotocin-induced pancreatic β-cells damage in Wistar rats. Biomolecules & Therapeutics, 22(1), 47–54. https://doi.org/10.4062/biomolther.2013.100 DOI: https://doi.org/10.4062/biomolther.2013.100

Utchariyakiat, I., Surassmo, S., Jaturanpinyo, M., Khuntayaporn, P., & Chomnawang, M. T. (2016). Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complementary and Alternative Medicine, 16(1), 1–7. https://doi.org/10.1186/s12906-016-1134-9 DOI: https://doi.org/10.1186/s12906-016-1134-9

Vaz, M. S. M., de Almeida de Souza, G. H., dos Santos Radai, J. A., Fraga, T. L., de Oliveira, G. G., Wender, H., da Silva, K. E., & Simionatto, S. (2023). Antimicrobial activity of cinnamaldehyde against multidrug-resistant Klebsiella pneumoniae: An in vitro and in vivo study. Brazilian Journal of Microbiology, 54(3), 1655–1664. https://doi.org/10.1007/s42770-023-01040-z DOI: https://doi.org/10.1007/s42770-023-01040-z

Walker, M. K., Boberg, J. R., Walsh, M. T., Wolf, V., Trujillo, A., Duke, M. S., Palme, R., & Felton, L. A. (2012). A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice. Toxicology and Applied Pharmacology, 260(1), 65–69. https://doi.org/10.1016/j.taap.2012.01.025 DOI: https://doi.org/10.1016/j.taap.2012.01.025

Wang, R., Wang, R., & Yang, B. (2009). Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innovative Food Science & Emerging Technologies, 10(2), 289–292. https://doi.org/10.1016/j.ifset.2008.12.002 DOI: https://doi.org/10.1016/j.ifset.2008.12.002

Yap, P. S. X., Krishnan, T., Chan, K. G., & Lim, S. H. E. (2015). Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. Journal of Microbiology and Biotechnology, 25(8), 1299–1306. https://doi.org/10.4014/jmb.1407.07054 DOI: https://doi.org/10.4014/jmb.1407.07054

Zaio, Y. P., Mazzotta, M. M., Ramírez Sánchez, A., Gomez, E. A., Zunino, M. P., & Ponce, A. A. (2019). Effects of the mint monoterpene (R)-(+)-pulegone evaluated by Functional Observational Battery: A potential short method. Pharmacognosy Research, 11(1), 31–36. https://doi.org/10.4103/PR.PR_115_18 DOI: https://doi.org/10.4103/pr.pr_115_18

Zaio, Y. P., Gatti, G., Ponce, A. A., Saavedra Larralde, N. A., Martinez, M. J., Zunino, M. P., & Zygadlo, J. A. (2018). Cinnamaldehyde and related phenylpropanoids, natural repellents, and insecticides against Sitophilus zeamais (Motsch.). A chemical structure‐bioactivity relationship. Journal of the Science of Food and Agriculture, 98(15), 5822-5831. DOI: https://doi.org/10.1002/jsfa.9132

Zhang, Y., Tian, R., Wu, H., Li, X., Li, S., & Bian, L. (2020). Evaluation of acute and sub-chronic toxicity of Lithothamnion sp. in mice and rats. Toxicology Reports, 7, 852–858. https://doi.org/10.1016/j.toxrep.2020.07.005 DOI: https://doi.org/10.1016/j.toxrep.2020.07.005

Downloads

Published

10/16/2025

Data Availability Statement

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are included in the paper

How to Cite

Bottino, E., Zaio, Y. P. . ., Saavedra Larralde , N. A. ., Occhieppo , V. B. ., Zunino, M. P., & Ponce, A. A. . . (2025). Sub-acute Cinnamaldehyde rectal administration induces non-toxic effects in neurological and physiological responses in C57BL/6 mice. Journal of Phytochemical Insights, 2(01), 1-9. https://doi.org/10.71193/jpci.20250015

Funding data

Similar Articles

You may also start an advanced similarity search for this article.