Phosphodiesterase-4 Inhibitors in COPD Therapy: A Review of Mechanisms, Limitations, and Emerging Opportunities

Authors

  • Ajay Singh Sai College of Pharmacy, Sikatiya, Mau, Uttar Pradesh, India Author
  • Sushil K. Kashaw Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Madhya Pradesh, India Author
  • Ajay Kumar Verma Maharishi School of Pharmaceutical Sciences, Maharishi University of Information Technology, Lucknow. Author https://orcid.org/0009-0004-5191-9225

DOI:

https://doi.org/10.71193/jmct.20250009

Keywords:

COPD, phosphodiesterase-4 inhibitors, inflammation, roflumilast, drug development

Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease with a high global morbidity rate and irreversible airflow limitation. Without addressing the underlying inflammation, current therapies mainly reduce symptoms. By examining the development, mechanisms, and therapeutic potential of phosphodiesterase-4 (PDE4) inhibitors in COPD, this review highlights developments, obstacles, and new approaches to clinical translation. PDE4 inhibitors suppress the release of inflammatory mediators and promote bronchodilation by increasing intracellular cyclic adenosine monophosphate (cAMP) levels. However, the extensive distribution of PDE4 in non-pulmonary tissues limits the use of treatment by causing gastrointestinal and neuropsychiatric side effects. The literature from 1977 to 2025 shows that while second-generation agents like roflumilast and cilomilast showed improved selectivity but only slight benefits, early compounds like rolipram showed efficacy but poor tolerability. Isoform-selective PDE4B targeting, inhaled delivery methods, and dual PDE3/4 inhibition are recent developments that present encouraging avenues for improving safety and efficacy. PDE4 inhibitors offer important mechanistic insight into COPD inflammation, despite the fact that clinical progress is still limited. Future developments will rely on better isoform specificity, optimized pulmonary formulations, and biomarker-guided patient selection. PDE4 inhibitors may progress from experimental anti-inflammatory drugs to precision treatments that can alter the course of COPD with these improvements.

Downloads

Download data is not yet available.

References

Adeloye, D., Chua, S., Lee, C., Basquill, C., Papana, A., Theodoratou, E. J. s. r., & meta-analysis. Global and regional estimates of COPD prevalence. 5, 020415.

Akenroye, A., Boyce, J. A., Kita, H. J. J. o. A., & Immunology, C. (2025). Targeting alarmins in asthma-From the bench to the clinic. DOI: https://doi.org/10.1016/j.jaci.2025.01.017

Albarrati, A. M., Gale, N. S., Munnery, M. M., Cockcroft, J. R., & Shale, D. J. J. B. p. m. (2020). Daily physical activity and related risk factors in COPD. 20(1), 60. DOI: https://doi.org/10.1186/s12890-020-1097-y

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., & Scott, J. D. J. J. o. c. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. 15(16), 2205-2231. DOI: https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

Ashton, M. J., Cook, D. C., Fenton, G., Karlsson, J.-A., Palfreyman, M. N., Raeburn, D., . . . Vicker, N. (1994). Selective Type IV Phosphodiesterase Inhibitors as Antiasthmatic Agents. The Syntheses and Biological Activities of 3-(Cyclopentyloxy)-4-methoxybenzamides and Analogs. Journal of Medicinal Chemistry, 37(11), 1696-1703. doi:10.1021/jm00037a021

Ashton, M. J., Cook, D. C., Fenton, G., Karlsson, J.-A., Palfreyman, M. N., Raeburn, D., . . . Vicker, N. J. J. o. m. c. (1994). Selective type IV phosphodiesterase inhibitors as antiasthmatic agents. the syntheses and biological activities of 3-(cyclopentyloxy)-4-methoxybenzamides and analogs. 37(11), 1696-1703. DOI: https://doi.org/10.1021/jm00037a021

Athanazio, R. J. C. (2012). Airway disease: similarities and differences between asthma, COPD and bronchiectasis. 67, 1335-1343. DOI: https://doi.org/10.6061/clinics/2012(11)19

Awrejcewicz, J., Krysko-Jr, V., Kalutsky, L., Zhigalov, M., & Krysko, V. J. A. o. C. M. i. E. (2021). Review of the methods of transition from partial to ordinary differential equations: From macro-to nano-structural dynamics. 28(7), 4781-4813. DOI: https://doi.org/10.1007/s11831-021-09550-5

Azam, S. S., Abbasi, S. W. J. T. B., & Modelling, M. (2013). Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. 10(1), 63. DOI: https://doi.org/10.1186/1742-4682-10-63

Banner, K. H., & Press, N. J. (2009). Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br J Pharmacol, 157(6), 892-906. doi:10.1111/j.1476-5381.2009.00170.x

Banner, K. H., & Press, N. J. (2009). Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. 157(6), 892-906. doi:https://doi.org/10.1111/j.1476-5381.2009.00170.x DOI: https://doi.org/10.1111/j.1476-5381.2009.00170.x

Barjaktarevic, I. Z., & Milstone, A. P. J. I. j. o. c. o. p. d. (2020). Nebulized therapies in COPD: past, present, and the future. 1665-1677. DOI: https://doi.org/10.2147/COPD.S252435

Barnes, P. J. (2005). Emerging Targets for COPD Therapy. 4(6), 675-683. doi:https://doi.org/10.2174/156801005774912833 DOI: https://doi.org/10.2174/156801005774912833

Barnes, P. J. (2013). New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov, 12(7), 543-559. doi:10.1038/nrd4025 DOI: https://doi.org/10.1038/nrd4025

Barnes, P. J., & Stockley, R. A. COPD: current therapeutic interventions and future approaches. 25(6), 1084-1106. doi:10.1183/09031936.05.00139104 %J European Respiratory Journal DOI: https://doi.org/10.1183/09031936.05.00139104

Barnes, P. J. J. A. (2019). Inflammatory endotypes in COPD. 74(7), 1249-1256. DOI: https://doi.org/10.1111/all.13760

Barnes, P. J. J. C. s. (2017). Cellular and molecular mechanisms of asthma and COPD. 131(13), 1541-1558. DOI: https://doi.org/10.1042/CS20160487

Barnes, P. J. J. J. o. A., & Immunology, C. (2016). Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. 138(1), 16-27. DOI: https://doi.org/10.1016/j.jaci.2016.05.011

Barnes, P. J. J. N. r. D. d. (2002). New treatments for COPD. 1(6), 437-446. DOI: https://doi.org/10.1038/nrd820

Barnette, M. S., Christensen, S. B., Essayan, D. M., Grous, M., Prabhakar, U., Rush, J. A., . . . therapeutics, e. (1998). SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor: in vitro anti-inflammatory actions. 284(1), 420-426. DOI: https://doi.org/10.1016/S0022-3565(24)37221-0

Beasley, R., Hughes, R., Agusti, A., Calverley, P., Chipps, B., Del Olmo, R., . . . Janson, C. J. A. o. t. A. T. S. (2025). Prevalence and Clinical Characteristics of Persistent Airflow Limitation in the NOVELTY Cohort. (ja). DOI: https://doi.org/10.1513/AnnalsATS.202412-1273OC

Bergantini, L., Baker, J., Bossios, A., Braunstahl, G. J., Conemans, L. H., Lombardi, F., . . . Beech, A. (2024). ERS International Congress 2023: highlights from the Airway Diseases Assembly. ERJ Open Res, 10(2). doi:10.1183/23120541.00891-2023 DOI: https://doi.org/10.1183/23120541.00891-2023

Bezerra, F. S., Lanzetti, M., Nesi, R. T., Nagato, A. C., Silva, C. P. e., Kennedy-Feitosa, E., . . . Valenca, S. S. J. A. (2023). Oxidative stress and inflammation in acute and chronic lung injuries. 12(3), 548. DOI: https://doi.org/10.3390/antiox12030548

Bjermer, L., Abbott-Banner, K., & Newman, K. (2019). Efficacy and safety of a first-in-class inhaled PDE3/4 inhibitor (ensifentrine) vs salbutamol in asthma. Pulm Pharmacol Ther, 58, 101814. doi:10.1016/j.pupt.2019.101814 DOI: https://doi.org/10.1016/j.pupt.2019.101814

Blackburn-Munro, G. (2004). Pain-like behaviours in animals – how human are they? Trends in Pharmacological Sciences, 25(6), 299-305. doi:10.1016/j.tips.2004.04.008

Blackburn-Munro, G. J. T. i. p. s. (2004). Pain-like behaviours in animals–how human are they? , 25(6), 299-305. DOI: https://doi.org/10.1016/j.tips.2004.04.008

Blauvelt, A., Langley, R. G., Gordon, K. B., Silverberg, J. I., Eyerich, K., Sommer, M. O., . . . therapy. (2023). Next generation PDE4 inhibitors that selectively target PDE4B/D subtypes: a narrative review. 13(12), 3031-3042. DOI: https://doi.org/10.1007/s13555-023-01054-3

Bolger, G. B. J. T. i. G. (2021). The PDE-opathies: diverse phenotypes produced by a functionally related multigene family. 37(7), 669-681. DOI: https://doi.org/10.1016/j.tig.2021.03.002

Boswell‐Smith, V., Spina, D., & Page, C. P. J. B. j. o. p. (2006). Phosphodiesterase inhibitors. 147(S1), S252-S257. DOI: https://doi.org/10.1038/sj.bjp.0706495

Boukhenouna, S., Wilson, M. A., Bahmed, K., Kosmider, B. J. O. m., & longevity, c. (2018). Reactive oxygen species in chronic obstructive pulmonary disease. 2018(1), 5730395. DOI: https://doi.org/10.1155/2018/5730395

Boutou, A. K., Shrikrishna, D., Tanner, R. J., Smith, C., Kelly, J. L., Ward, S. P., . . . Hopkinson, N. S. J. E. R. J. (2013). Lung function indices for predicting mortality in COPD. 42(3), 616-625. DOI: https://doi.org/10.1183/09031936.00146012

Brandao, E., Colombier, J.-P., Duffner, S., Emonet, R., Garrelie, F., Habrard, A., . . . Sebban, M. J. E. (2022). Learning PDE to model self-organization of matter. 24(8), 1096. DOI: https://doi.org/10.3390/e24081096

Brullo, C., Massa, M., Villa, C., Ricciarelli, R., Rivera, D., Pronzato, M. A., . . . Chemistry, M. (2015). Synthesis, biological activities and pharmacokinetic properties of new fluorinated derivatives of selective PDE4D inhibitors. 23(13), 3426-3435. DOI: https://doi.org/10.1016/j.bmc.2015.04.027

Brusasco, V., Barisione, G., & Crimi, E. J. R. (2015). Pulmonary physiology: future directions for lung function testing in COPD. 20(2), 209-218. DOI: https://doi.org/10.1111/resp.12388

Brüssow, H. (2025). Respiratory syncytial virus: health burden, disease prevention, and treatment-recent progress and lessons learned. Microlife, 6, uqaf003. doi:10.1093/femsml/uqaf003 DOI: https://doi.org/10.1093/femsml/uqaf003

Burnouf, C., & Pruniaux, M.-P. J. C. p. d. (2002). Recent advances in PDE4 inhibitors as immunoregulators and anti-inflammatory drugs. 8(14), 1255-1296. DOI: https://doi.org/10.2174/1381612023394665

Calzetta, L., Ritondo, B. L., Matera, M. G., Pezzuto, G., Cazzola, M., & Rogliani, P. J. E. O. o. I. D. (2020). Investigational treatments in phase I and II clinical trials: a systematic review in chronic obstructive pulmonary disease (COPD). 29(7), 723-738. DOI: https://doi.org/10.1080/13543784.2020.1769064

Castro, D., Patil, S., Zubair, M., & Keenaghan, M. J. S. (2024). Arterial blood gas.

Cedervall, P., Aulabaugh, A., Geoghegan, K. F., McLellan, T. J., & Pandit, J. J. P. o. t. N. A. o. S. (2015). Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. 112(12), E1414-E1422. DOI: https://doi.org/10.1073/pnas.1419906112

Cheng, J. B., Cooper, K., Duplantier, A. J., Eggler, J. F., Kraus, K. G., Marshall, S. C., . . . Letters, M. C. (1995). Synthesis and in vitro profile of a novel series of catechol benzimidazoles. The discovery of potent, selective phosphodiesterase type IV inhibitors with greatly attenuated affinity for the [3H] rolipram binding site. 5(17), 1969-1972. DOI: https://doi.org/10.1016/0960-894X(95)00334-P

Cohen, B. H., BALL JR, W. C., Brashears, S., Diamond, E. L., Kreiss, P., Levy, D. A., . . . Tockman, M. S. J. A. j. o. e. (1977). Risk factors in chronic obstructive pulmonary disease (COPD). 105(3), 223-232. DOI: https://doi.org/10.1093/oxfordjournals.aje.a112378

Crocetti, L., Floresta, G., Cilibrizzi, A., & Giovannoni, M. P. J. M. (2022). An overview of PDE4 inhibitors in clinical trials: 2010 to early 2022. 27(15), 4964. DOI: https://doi.org/10.3390/molecules27154964

Cukic, V., Lovre, V., Dragisic, D., & Ustamujic, A. J. M. s.-m. (2012). Asthma and chronic obstructive pulmonary disease (COPD)–differences and similarities. 24(2), 100. DOI: https://doi.org/10.5455/msm.2012.24.100-105

De Savi, C., Cox, R. J., Warner, D. J., Cook, A. R., Dickinson, M. R., McDonough, A., . . . Young, S. S. J. J. o. M. C. (2014). Efficacious inhaled PDE4 inhibitors with low emetic potential and long duration of action for the treatment of COPD. 57(11), 4661-4676. DOI: https://doi.org/10.1021/jm5001216

Degerman, E., Belfrage, P., & Manganiello, V. C. J. J. o. B. C. (1997). Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). 272(11), 6823-6826. DOI: https://doi.org/10.1074/jbc.272.11.6823

Donohue, J. F. J. C. J. o. C. O. P. D. (2005). Minimal clinically important differences in COPD lung function. 2(1), 111-124. DOI: https://doi.org/10.1081/COPD-200053377

Dym, O., Xenarios, I., Ke, H., & Colicelli, J. J. M. p. (2002). Molecular docking of competitive phosphodiesterase inhibitors. 61(1), 20-25. DOI: https://doi.org/10.1124/mol.61.1.20

Ferguson, G. T., Rabe, K. F., Martinez, F. J., Fabbri, L. M., Wang, C., Ichinose, M., . . . Reisner, C. (2018). Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med, 6(10), 747-758. doi:10.1016/s2213-2600(18)30327-8 DOI: https://doi.org/10.1016/S2213-2600(18)30327-8

Francis, S. H., Houslay, M. D., & Conti, M. J. P. a. d. t. (2011). Phosphodiesterase inhibitors: factors that influence potency, selectivity, and action. 47-84. DOI: https://doi.org/10.1007/978-3-642-17969-3_2

Giembycz, M., Dent, G. J. C., & Allergy, E. (1992). Prospects for selective cyclic nucleotide phosphodiesterase inhibitors in the treatment of bronchial asthma. 22(3). DOI: https://doi.org/10.1111/j.1365-2222.1992.tb03095.x

Giembycz, M. A. J. E. o. o. i. d. (2001). Cilomilast: a second generation phosphodiesterase 4 inhibitor for asthma and chronic obstructive pulmonary disease. 10(7), 1361-1379. DOI: https://doi.org/10.1517/13543784.10.7.1361

Gratteri, P., Bonaccini, C., & Melani, F. J. J. O. M. C. (2005). Searching for a reliable orientation of ligands in their binding site: Glide versus FIGO in the case study of PDE4 inhibitorsJ. Med. Chem., 48 (5), 1657-65. 48, 1657-1665. DOI: https://doi.org/10.1021/jm049289b

Hagen, T. J., Mo, X., Burgin, A. B., Fox 3rd, D., Zhang, Z., Gurney, M. E. J. B., & letters, m. c. (2014). Discovery of triazines as selective PDE4B versus PDE4D inhibitors. 24(16), 4031-4034. DOI: https://doi.org/10.1016/j.bmcl.2014.06.002

Hanania, N. A., Ambrosino, N., Calverley, P., Cazzola, M., Donner, C. F., & Make, B. (2005). Treatments for COPD. Respir Med, 99 Suppl B, S28-40. doi:10.1016/j.rmed.2005.09.013 DOI: https://doi.org/10.1016/j.rmed.2005.09.013

Hara-Yokoyama, M., Terasawa, K., Ichinose, S., Watanabe, A., Podyma-Inoue, K. A., Akiyoshi, K., . . . Yanagishita, M. (2013). Sphingosine kinase 2 inhibitor SG-12 induces apoptosis via phosphorylation by sphingosine kinase 2. Bioorganic & Medicinal Chemistry Letters, 23(7), 2220-2224. doi:https://doi.org/10.1016/j.bmcl.2013.01.083

Hara-Yokoyama, M., Terasawa, K., Ichinose, S., Watanabe, A., Podyma-Inoue, K. A., Akiyoshi, K., . . . Letters, M. C. (2013). Sphingosine kinase 2 inhibitor SG-12 induces apoptosis via phosphorylation by sphingosine kinase 2. 23(7), 2220-2224. DOI: https://doi.org/10.1016/j.bmcl.2013.01.083

Hatzelmann, A., Schudt, C. J. T. J. o. p., & therapeutics, e. (2001). Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. 297(1), 267-279. DOI: https://doi.org/10.1016/S0022-3565(24)29537-9

Hayashi, T. J. J. A. T. (2012). Molecular mechanisms of metaplasia, differentiation and hyperplasia of goblet cellin allergic asthma. 3(121), 2. DOI: https://doi.org/10.4172/2155-6121.1000121

He, W., Huang, F.-C., Hanney, B., Souness, J., Miller, B., Liang, G., . . . Djuric, S. J. J. o. m. c. (1998). Novel cyclic compounds as potent phosphodiesterase 4 inhibitors. 41(22), 4216-4223. DOI: https://doi.org/10.1021/jm970575f

Hersh, C. P., Hokanson, J. E., Lynch, D. A., Washko, G. R., Make, B. J., Crapo, J. D., . . . Chest, C. I. J. (2011). Family history is a risk factor for COPD. 140(2), 343-350. DOI: https://doi.org/10.1378/chest.10-2761

Hikichi, M., Mizumura, K., Maruoka, S., & Gon, Y. J. J. o. t. d. (2019). Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. 11(Suppl 17), S2129. DOI: https://doi.org/10.21037/jtd.2019.10.43

Hulme, C., Mathew, R., Moriarty, K., Miller, B., Ramanjulu, M., Cox, P., . . . letters, m. c. (1998). Orally active indole N-oxide PDE4 inhibitors. 8(21), 3053-3058. DOI: https://doi.org/10.1016/S0960-894X(98)00572-1

Jackson, P., Muyanja, S. Z., & Siddharthan, T. J. C. i. C. M. (2023). Health equity and respiratory diseases in low-and middle-income countries. 44(3), 623-634. DOI: https://doi.org/10.1016/j.ccm.2023.03.015

Janjua, S., Fortescue, R., & Poole, P. (2020). Phosphodiesterase-4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev, 5(5), Cd002309. doi:10.1002/14651858.CD002309.pub6 DOI: https://doi.org/10.1002/14651858.CD002309.pub6

Jansen, C., Kooistra, A. J., Kanev, G. K., Leurs, R., de Esch, I. J., & de Graaf, C. J. J. o. M. C. (2016). PDEStrIAn: a phosphodiesterase structure and ligand interaction annotated database as a tool for structure-based drug design. 59(15), 7029-7065. DOI: https://doi.org/10.1021/acs.jmedchem.5b01813

Johns, D. P., Walters, J. A., & Walters, E. H. J. J. o. t. d. (2014). Diagnosis and early detection of COPD using spirometry. 6(11), 1557.

Kahnert, K., Jörres, R. A., Behr, J., & Welte, T. J. D. Ä. I. (2023). The diagnosis and treatment of COPD and its comorbidities. 120(25), 434. DOI: https://doi.org/10.3238/arztebl.m2023.0027

Keravis, T., & Lugnier, C. J. B. j. o. p. (2012). Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. 165(5), 1288-1305. DOI: https://doi.org/10.1111/j.1476-5381.2011.01729.x

Kim, E., Chun, H.-O., Jung, S.-H., Kim, J. H., Lee, J.-M., Suh, B.-C., . . . letters, m. c. (2003). Improvement of therapeutic index of phosphodiesterase type IV inhibitors as anti-asthmatics. 13(14), 2355-2358. DOI: https://doi.org/10.1016/S0960-894X(03)00405-0

Kim, S. Y., An, T. J., Rhee, C. K., Park, C. K., Kim, J. H., Yoon, H. J. C., . . . Physiology. (2021). The effect and associated mechanism of action of phosphodiesterase 4 (PDE4) inhibitor on CD4+ lymphocyte proliferation. 48(2), 221-226. DOI: https://doi.org/10.1111/1440-1681.13417

Kraïm-Leleu, M., Lesage, F.-X., Drame, M., Lebargy, F., & Deschamps, F. J. P. o. (2016). Occupational risk factors for COPD: a case-control study. 11(8), e0158719. DOI: https://doi.org/10.1371/journal.pone.0158719

Lorigo, M., Oliveira, N., Cairrao, E. J. J. o. C. D., & Disease. (2021). PDE-mediated cyclic nucleotide compartmentation in vascular smooth muscle cells: from basic to a clinical perspective. 9(1), 4. DOI: https://doi.org/10.3390/jcdd9010004

Ma, J., Rubin, B. K., & Voynow, J. A. J. C. (2018). Mucins, mucus, and goblet cells. 154(1), 169-176. DOI: https://doi.org/10.1016/j.chest.2017.11.008

Manallack, D. T., Hughes, R. A., & Thompson, P. E. (2005). The Next Generation of Phosphodiesterase Inhibitors: Structural Clues to Ligand and Substrate Selectivity of Phosphodiesterases. Journal of Medicinal Chemistry, 48(10), 3449-3462. doi:10.1021/jm040217u

Manallack, D. T., Hughes, R. A., & Thompson, P. E. J. J. o. m. c. (2005). The next generation of phosphodiesterase inhibitors: structural clues to ligand and substrate selectivity of phosphodiesterases. 48(10), 3449-3462. DOI: https://doi.org/10.1021/jm040217u

Manganiello, V., Degerman, E. J. T., & haemostasis. (1999). Cyclic nucleotide phosphodiesterases (PDEs): diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents. 82(08), 407-411. DOI: https://doi.org/10.1055/s-0037-1615860

Mannino, D. M., & Buist, A. S. J. T. L. (2007). Global burden of COPD: risk factors, prevalence, and future trends. 370(9589), 765-773. DOI: https://doi.org/10.1016/S0140-6736(07)61380-4

Mannino, D. M., Roberts, M. H., Mapel, D. W., Zhang, Q., Lunacsek, O., Grabich, S., . . . Pollack, M. F. J. C. (2024). National and local direct medical cost burden of COPD in the United States from 2016 to 2019 and projections through 2029. 165(5), 1093-1106. DOI: https://doi.org/10.1016/j.chest.2023.11.040

Matera, M. G., Ora, J., Cavalli, F., Rogliani, P., & Cazzola, M. (2021). New Avenues for Phosphodiesterase Inhibitors in Asthma. Journal of Experimental Pharmacology, 13(null), 291-302. doi:10.2147/JEP.S242961 DOI: https://doi.org/10.2147/JEP.S242961

Matera, M. G., Page, C. P., Calzetta, L., Rogliani, P., & Cazzola, M. (2020). Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev, 72(1), 218-252. doi:10.1124/pr.119.018150 DOI: https://doi.org/10.1124/pr.119.018150

McIntyre, C. C., Savasta, M., Kerkerian-Le Goff, L., & Vitek, J. L. (2004). Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clinical Neurophysiology, 115(6), 1239-1248. doi:https://doi.org/10.1016/j.clinph.2003.12.024

McIntyre, C. C., Savasta, M., Kerkerian-Le Goff, L., & Vitek, J. L. J. C. n. (2004). Uncovering the mechanism (s) of action of deep brain stimulation: activation, inhibition, or both. 115(6), 1239-1248. DOI: https://doi.org/10.1016/j.clinph.2003.12.024

Montana, J. G., & Dyke, H. J. J. E. o. o. i. d. (2002). Update on the therapeutic potential of PDE4 inhibitors. 11(1), 1-13. DOI: https://doi.org/10.1517/13543784.11.1.1

Mpamhanga, C. P., Chen, B., McLay, I. M., Ormsby, D. L., Lindvall, M. K. J. J. o. c. i., & modeling. (2005). Retrospective docking study of PDE4B ligands and an analysis of the behavior of selected scoring functions. 45(4), 1061-1074. DOI: https://doi.org/10.1021/ci050044x

Neder, J. A., de-Torres, J. P., Milne, K. M., & O'Donnell, D. E. J. C. i. C. M. (2020). Lung function testing in chronic obstructive pulmonary disease. 41(3), 347-366. DOI: https://doi.org/10.1016/j.ccm.2020.06.004

Nguyen-Ho, L., Trinh, H. K. T., Le-Thuong, V., Le, K.-M., Vo, V. T. N., Vu, D. M., . . . Diseases, R. (2025). Increased neutrophil elastase in affected lobes of bronchiectasis and correlation of its levels between sputum and bronchial lavage fluid. 88(2), 399. DOI: https://doi.org/10.4046/trd.2024.0078

Ochiai, H., Ohtani, T., Ishida, A., Kusumi, K., Kato, M., Kohno, H., . . . Toda, M. (2004). Highly potent PDE4 inhibitors with therapeutic potential. Bioorg Med Chem Lett, 14(1), 207-210. doi:10.1016/j.bmcl.2003.09.087 DOI: https://doi.org/10.1016/j.bmcl.2003.09.087

Ochiai, H., Ohtani, T., Ishida, A., Kusumi, K., Kato, M., Kohno, H., . . . Toda, M. (2004). Highly potent PDE4 inhibitors with therapeutic potential. Bioorganic & Medicinal Chemistry, 12(17), 4645-4665. doi:https://doi.org/10.1016/j.bmc.2004.06.032

Ochiai, H., Ohtani, T., Ishida, A., Kusumi, K., Kato, M., Kohno, H., . . . chemistry, m. (2004). Highly potent PDE4 inhibitors with therapeutic potential. 12(17), 4645-4665. DOI: https://doi.org/10.1016/j.bmc.2004.06.032

Organization, W. H. (2023). Tobacco and chronic obstructive pulmonary disease (COPD): WHO tobacco knowledge summaries: World Health Organization.

Paes, D., Schepers, M., Rombaut, B., van den Hove, D., Vanmierlo, T., & Prickaerts, J. J. P. R. (2021). The molecular biology of phosphodiesterase 4 enzymes as pharmacological targets: an interplay of isoforms, conformational states, and inhibitors. 73(3), 1016-1049. DOI: https://doi.org/10.1124/pharmrev.120.000273

Peng, Z., Zhou, J. a., & Tian, L. J. B. P. M. (2020). Pathogenic characteristics of sputum and bronchoalveolar lavage fluid samples from patients with lower respiratory tract infection in a large teaching hospital in China: a retrospective study. 20(1), 233. DOI: https://doi.org/10.1186/s12890-020-01275-8

Revelant, G., Gadais, C., Mathieu, V., Kirsch, G., Hesse, S. J. B., & letters, m. c. (2014). Synthesis and antiproliferative studies of 5-aryl-2-(3-thienylamino)-1, 3, 4-thiadiazoles. 24(12), 2724-2727. DOI: https://doi.org/10.1016/j.bmcl.2014.04.043

Richter, W., & Conti, M. J. J. o. B. C. (2004). The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases. 279(29), 30338-30348. DOI: https://doi.org/10.1074/jbc.M312687200

Rogers, D. F. J. T. i. j. o. b., & biology, c. (2003). The airway goblet cell. 35(1), 1-6. DOI: https://doi.org/10.1016/S1357-2725(02)00083-3

Russo, L., Lebel, L., & Koe, B. (1987). Effects of selected phosphodiesterase (PDE) inhibitors on calcium-independent PDE activity and rolipram binding sites of cerebral cortex. Paper presented at the Soc. Neurosci. Abstr.

Schafer, P. H., & Day, R. M. J. J. o. t. A. A. o. D. (2013). Novel systemic drugs for psoriasis: mechanism of action for apremilast, a specific inhibitor of PDE4. 68(6), 1041-1042. DOI: https://doi.org/10.1016/j.jaad.2012.10.064

Schultz, J. E. J. C. g., effectors, & implications, t. (2009). Structural and biochemical aspects of tandem GAF domains. 93-109. DOI: https://doi.org/10.1007/978-3-540-68964-5_6

Sciurba, F. C. J. C. (2004). Physiologic similarities and differences between COPD and asthma. 126(2), 117S-124S. DOI: https://doi.org/10.1016/S0012-3692(15)31481-1

Sköld, C. M. J. T. c. r. j. (2010). Remodeling in asthma and COPD–differences and similarities. 4, 20-27. DOI: https://doi.org/10.1111/j.1752-699X.2010.00193.x

Stella, G. M., Bertuccio, F. R., Novy, C., Bortolotto, C., Salzillo, I., Perrotta, F., . . . Cerveri, P. J. C. (2025). From COPD to Smoke-Related Arteriopathy: The Mechanical and Immune–Inflammatory Landscape Underlying Lung Cancer Distant Spreading—A Narrative Review. 14(16), 1225. DOI: https://doi.org/10.3390/cells14161225

Tantucci, C., & Modina, D. J. I. j. o. c. o. p. d. (2012). Lung function decline in COPD. 95-99. DOI: https://doi.org/10.2147/COPD.S27480

Tommola, M., Ilmarinen, P., Tuomisto, L. E., Lehtimäki, L., Haanpää, J., Niemelä, O., & Kankaanranta, H. J. E. R. J. (2017). Differences between asthma–COPD overlap syndrome and adult-onset asthma. 49(5). DOI: https://doi.org/10.1183/13993003.02383-2016

Torphy, T. J. J. A. J. o. R., & Medicine, C. C. (1998). Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. 157(2), 351-370. DOI: https://doi.org/10.1164/ajrccm.157.2.9708012

Wang, Z., Lin, J., Liang, L., Huang, F., Yao, X., Peng, K., . . . Zheng, J. J. R. r. (2025). Global, regional, and national burden of chronic obstructive pulmonary disease and its attributable risk factors from 1990 to 2021: an analysis for the Global Burden of Disease Study 2021. 26(1), 2. DOI: https://doi.org/10.1186/s12931-024-03051-2

Wilhem, R., Loe, B., Alvarez, R., Devens, B., & Fong, A. (1995). Pyrido-[2, 3-d] pyridazinones as Potent and Selective Type 4 Phosphodiesterase Inhibitors. Paper presented at the 8th RSC-SCI Medicinal Chemistry Symposium, Cambridge, UK.

Xu, J., Zeng, Q., Li, S., Su, Q., & Fan, H. J. F. i. i. (2024). Inflammation mechanism and research progress of COPD. 15, 1404615. DOI: https://doi.org/10.3389/fimmu.2024.1404615

Xu, R. X., Hassell, A. M., Vanderwall, D., Lambert, M. H., Holmes, W. D., Luther, M. A., . . . Ke, H. J. S. (2000). Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. 288(5472), 1822-1825. DOI: https://doi.org/10.1126/science.288.5472.1822

Yu, Y., Yang, G., Wang, Y., Jin, F., Wang, H., Yu, Z., . . . Resistance, D. (2023). A rare strain Actinomadura geliboluensis was first isolated from the bronchoalveolar lavage fluid of a patient with pneumonia. 3101-3108. DOI: https://doi.org/10.2147/IDR.S409701

Downloads

Published

2025-11-29

Data Availability Statement

Not applicable 

How to Cite

Ajay Singh, Sushil K. Kashaw, & Verma, A. K. (2025). Phosphodiesterase-4 Inhibitors in COPD Therapy: A Review of Mechanisms, Limitations, and Emerging Opportunities. Journal of Medicinal Chemistry and Therapeutics, 2(01), 1-14. https://doi.org/10.71193/jmct.20250009

Similar Articles

You may also start an advanced similarity search for this article.