Evaluation of anti-obesogenic and anti-diabetic effects of tauroursodeoxycholic acid in Swiss albino rats: possible blockage of CHOP-dependent mitochondrial shuttling of TBP-2 and antagonism of streptozotocin-induced type 2 diabetes

Authors

DOI:

https://doi.org/10.71193/jcid.20250009

Keywords:

Bile acids, blockage mitochondrial shuttling, obesity, streptozotocin antagonism, type 2 diabetes

Abstract

Endoplasmic reticulum (ER) stress plays a critical role in the progression of type 2 diabetes mellitus (T2DM) through activation of the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). Accumulation of CHOP in the nucleus promotes thioredoxin-interacting protein (TXNIP) expression and its translocation to mitochondria, thereby contributing to mitochondrial dysfunction and β-cell loss. Tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) are established inhibitors of ER stress–induced CHOP expression. This study evaluated the combined effects of TUDCA and UDCA on body weight regulation and glycemic control in a rat model of T2DM induced by high-fat diet (HFD) feeding and low-dose streptozotocin (STZ). Swiss albino male rats were divided into four groups: control, HFD control, diabetic (HFD+STZ), and treatment [HFD+STZ+TUDCA (0.02%)/UDCA (0.3%)]. Body weight, fasting blood glucose, and postprandial blood glucose were assessed over 90 days. Supplementation with TUDCA and UDCA significantly reduced weight gain and improved glycemic control in diabetic rats (p < 0.0001). The incidence of diabetes was substantially lower in the treatment group compared with untreated diabetic rats, with 0% vs. 50% incidence by day 54 and 34% vs. 75% by day 90.  By day 90, PBG levels were significantly lower in treated diabetic rats than in untreated diabetic rats (p < 0.0001). These findings indicate that combined TUDCA and UDCA supplementation exerts strong anti-obesogenic and anti-diabetic effects, enhancing glucose homeostasis and delaying diabetes onset. These findings suggest that blockers of TBP-2 mitochondrial shuttling, such as TUDCA and UDCA, may represent promising strategies for the prevention and treatment of T2DM.

Downloads

Download data is not yet available.

References

Amo-Shiinoki, K., Tanabe, K., Nishimura, W., Hatanaka, M., Kondo, M., Kagawa, S., Zou, M., Morikawa, S., Sato, Y., Komatsu, M., Mizukami, H., Nishida, N., Asahara, S. I., Masutani, H., & Tanizawa, Y. (2025). β cell dedifferentiation, the underlying mechanism of diabetes in Wolfram syndrome. Science Translational Medicine, 17(786), eadp2332. DOI: https://doi.org/10.1126/scitranslmed.adp2332

Arruda, A. P., Hotamisligil, G. S., & Carvalho, C. R. (2014). Integrated regulation of ER and mitochondrial function in metabolic diseases. Trends in Endocrinology & Metabolism, 25(12), 646–655.

Beuers, U., Boyer, J. L., Paumgartner, G. (1998). Ursodeoxycholic acid in cholestasis: Potential mechanisms of action and therapeutic applications. Hepatology, 28 (6): 1449–1453. DOI: https://doi.org/10.1002/hep.510280601

Beuers, U., Trauner, M., Jansen, P. L. M., & Poupon, R. (2015). New paradigms in the treatment of hepatic cholestasis: From UDCA to novel nuclear receptor ligands. Journal of Hepatology, 62(1 Suppl), S25–S37. DOI: https://doi.org/10.1016/j.jhep.2015.02.023

Cao, A. L., Wang, L., Chen, X., Wang, Y. M., Guo, H. J., Chu, S., Liu, C., Zhang, X. M., & Peng, W. (2016). Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Laboratory Investigation, 96(6), 610–622. DOI: https://doi.org/10.1038/labinvest.2016.44

Ceriello, A. (2005). Postprandial Hyperglycemia and Diabetes Complications. Diabetes, 54(1): 1–7. DOI: https://doi.org/10.2337/diabetes.54.1.1

Chávez-Talavera O, Tailleux A, Lefebvre P., Staels, B. (2017). Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 152(7): 1679-1694.e3. DOI: https://doi.org/10.1053/j.gastro.2017.01.055

Chen, J., Fontes, G., Saxena, G., Shalev, A. (2010). Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated β-cell death. Diabetes, 59(2): 440–447. DOI: https://doi.org/10.2337/db09-0949

Chiang, J. Y. L. (2017). Bile acid metabolism and signaling in liver disease and therapy. Liver Research, 1(1), 3–9. DOI: https://doi.org/10.1016/j.livres.2017.05.001

Choi, E. H., & Park, S. J. (2023). TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Experimental & Molecular Medicine, 55, 1348–1356. DOI: https://doi.org/10.1038/s12276-023-01019-8

Chung, J., Kim, K. H., Lee, S. C., An, S. H., & Kwon, K. (2015). Ursodeoxycholic acid (UDCA) exerts anti-atherogenic effects by inhibiting endoplasmic reticulum (ER) stress induced by disturbed flow. Molecules and Cells, 38(10), 851–858. DOI: https://doi.org/10.14348/molcells.2015.0094

Cnop, M., Foufelle, F., & Velloso, L. A. (2012). Endoplasmic reticulum stress, obesity and diabetes. Trends in Molecular Medicine, 18(2), 63–68. DOI: https://doi.org/10.1016/j.molmed.2011.07.010

Colditz, G. A., Willett, W. C., Stampfer, M. J., Manson, J. E., Hennekens, C. H., Arky, R. A., & Speizer, F. E. (1990). Weight as a risk factor for clinical diabetes in women. American Journal of Epidemiology, 132(3), 501–513. DOI: https://doi.org/10.1093/oxfordjournals.aje.a115686

Habib, M. R., Tokutake, Y., & Yonekura, S. (2025). Ursodeoxycholic acid alleviates palmitic acid-induced apoptosis in bovine mammary epithelial cells. Animal Science Journal, 96(1), e70038. DOI: https://doi.org/10.1111/asj.70038

Hayashi, T., Rizzuto, R., & Hajnoczky, G. (2009). MAM: More than just a housekeeper. Trends in Cell Biology, 19(2), 81–88. DOI: https://doi.org/10.1016/j.tcb.2008.12.002

Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G., & Willett, W. C. (2001). Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. The New England Journal of Medicine, 345(11), 790–797. DOI: https://doi.org/10.1056/NEJMoa010492

International Diabetes Federation. (2021). IDF diabetes atlas (10th ed.). International Diabetes Federation.

Kahn, B. B. & Flier, J. S. (2000). Obesity and insulin resistance. The Journal of Clinical Investigation, 106(4): 473–481. DOI: https://doi.org/10.1172/JCI10842

Kars, M., Yang, L., Gregor, M. F., Mohammed, B. S., Pietka, T. A., Finck, B. N., Patterson, B. W., Horton, J. D., Mittendorfer, B., Hotamisligil, G. S., Klein, S. (2010). Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes, 59(8): 1899–1905. DOI: https://doi.org/10.2337/db10-0308

Kolb, H. & Martin, S. (2017). Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine, 15(1): 131. DOI: https://doi.org/10.1186/s12916-017-0901-x

Kupsal, K., Mudigonda, S., Kumar Gundapaneni, K. (2015). Glucotoxicity and lipotoxicity induced beta-cell apoptosis in type 2 diabetes mellitus. Int J Anal Bio-Sci, 3 (4): 84-89

Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89(1), 147–191. DOI: https://doi.org/10.1152/physrev.00010.2008

Li, X., Shao, X., Bazzano, L. A., Xue, Q., Koseva, B. S., Grundberg, E., Shai, I., Bray, G. A., Sacks, F. M., Qi, L. (2022). Blood DNA methylation at TXNIP and glycemic changes in response to weight-loss diet interventions: the POUNDS lost trial. Int J Obes (Lond), 46(6):1122-1127. DOI: https://doi.org/10.1038/s41366-022-01084-5

Li, X., Yang, J., Zhou, X., et al. (2024). Ketogenic diet-induced bile acids protect against obesity through reduced calorie absorption. Nature Metabolism, 6, 1397–1414. DOI: https://doi.org/10.1038/s42255-024-01072-1

Lu, B., Chen, J., Xu, G., Grayson, T. B., Jing, G., Jo, S., & Shalev, A. (2022). Alpha cell thioredoxin-interacting protein deletion improves diabetes-associated hyperglycemia and hyperglucagonemia. Endocrinology, 163(11), bqac133. DOI: https://doi.org/10.1210/endocr/bqac133

Ma, H., Wang, X., Liang, Z., Li, X., Heianza, Y., He, J., Chen, W., Bazzano, L., Qi, L. (2023). BMI change during childhood, DNA methylation change at TXNIP, and glucose change during midlife. Obesity (Silver Spring), 31(8):2150-2158. DOI: https://doi.org/10.1002/oby.23806

Malo, A., Krüger, B., Seyhun, E., Schäfer, C., Hoffmann, R. T., Göke, B., & Kubisch, C. H. (2010). Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(4), G877–G886. DOI: https://doi.org/10.1152/ajpgi.00423.2009

Morales, C., Fernandez, M., Ferrer, R., Raimunda, D., Carrer, D. C., & Bollo, M. (2023). Ursodeoxycholic acid binds PERK and ameliorates neurite atrophy in a cellular model of GM2 gangliosidosis. International Journal of Molecular Sciences, 24(8), 7209. DOI: https://doi.org/10.3390/ijms24087209

Mueller, M., Castro, R. E., Thorell, A., Marschall, H. U., Auer, N., Herac, M., Rodrigues, C. M. P., & Trauner, M. (2018). Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients. Liver International, 38(3), 523–531. DOI: https://doi.org/10.1111/liv.13562

Ozcan, U., Cao, Q., Yilmaz, E., Lee, A. H., Iwakoshi, M., Ozdelen, E., ... & Glimcher, L. H. (2004). Endoplasmic reticulum stress links obesity, insulin resistance, and hepatic steatosis. Science, 306(5695), 457–461. DOI: https://doi.org/10.1126/science.1103160

Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R. O., Görgün, C. Z., & Hotamisligil, G. S. (2006). Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 313(5790), 1137–1140. DOI: https://doi.org/10.1126/science.1128294

Paridaens, A., Raevens, S., Devisscher, L., Bogaerts, E., Verhelst, X., Hoorens, A., Van Vlierberghe, H., van Grunsven, L. A., & Geerts, A., Colle, I. (2017). Modulation of the unfolded protein response by tauroursodeoxycholic acid counteracts apoptotic cell death and fibrosis in a mouse model for secondary biliary liver fibrosis. International Journal of Molecular Sciences, 18(1), 214. DOI: https://doi.org/10.3390/ijms18010214

Park, S. J., Kim, Y., Li, C., Suh, J., Sivapackiam, J., Goncalves, T. M., Jarad, G., Zhao, G., Urano, F., Sharma, V., & Chen, Y. M. (2022). Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome. Proceedings of the National Academy of Sciences, 119(35), e2116505119. DOI: https://doi.org/10.1073/pnas.2116505119

Pols, T. W. H., Noriega, L. G., Nomura, M., Auwerx, J., & Schoonjans, K. (2011). The bile acid membrane receptor TGR5: A valuable metabolic target. Digestive Diseases, 29(1), 37–44. DOI: https://doi.org/10.1159/000324126

Qualls-Histed, S. J., Nielsen, C. P., & MacGurn, J. A. (2023). Lysosomal trafficking of the glucose transporter GLUT1 requires sequential regulation by TXNIP and ubiquitin. iScience, 26(3), 106150. DOI: https://doi.org/10.1016/j.isci.2023.106150

Rowland, A. A., & Voeltz, G. K. (2012). Defining the shape of the endoplasmic reticulum through protein-mediated curvature. Journal of Cell Biology, 198(6), 947–961.

Samuel, V. T., & Shulman, G. I. (2016). The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. The Journal of Clinical Investigation, 126(1), 12–22. DOI: https://doi.org/10.1172/JCI77812

Saxena, G., Chen, J., & Shalev, A. (2010). Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. Journal of Biological Chemistry, 285(6), 3997–4005. DOI: https://doi.org/10.1074/jbc.M109.034421

Song, B., Scheuner, D., Ron, D., Pennathur, S., & Kaufman, R. J. (2008). Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. The Journal of Clinical Investigation, 118(10), 3378–3389. DOI: https://doi.org/10.1172/JCI34587

Staels, B., Handelsman, Y., Fonseca, V. (2010). Bile acid sequestrants for lipid and glucose control. Curr Diab Rep, 10(1):70-7. DOI: https://doi.org/10.1007/s11892-009-0087-5

Szpigel, A., Hainault, I., Carlier, A., Venteclef, N., Batto, A. F., Hajduch, E., Bernard, C., Ktorza, A., Gautier, J. F., Ferré, P., Bourron, O., & Foufelle, F. (2018). Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia, 61(2), 399–412. DOI: https://doi.org/10.1007/s00125-017-4462-5

Talchai, C., Xuan, S., Lin, H. V., Sussel, L., & Accili, D. (2012). Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell, 150(6), 1223–1234. DOI: https://doi.org/10.1016/j.cell.2012.07.029

Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., Pellicciari, R., Auwerx, J., Schoonjans, K. (2009). TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metabolism, 10(3): 167–177. DOI: https://doi.org/10.1016/j.cmet.2009.08.001

Xiang, Y., Wang, Z., Hui, Q., Gwinn, M., Vaccarino, V., Sun. Y. V. (2021). DNA Methylation of TXNIP Independently Associated with Inflammation and Diabetes Mellitus in Twins. Twin Research and Human Genetics, 24(5): 273–280. DOI: https://doi.org/10.1017/thg.2021.42

Xu, G., Chen, J., Jing, G., & Shalev, A. (2013). Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nature Medicine, 19(9), 1141–1146. DOI: https://doi.org/10.1038/nm.3287

Yoon, Y. M., Lee, J. H., Yun, S. P., Han, Y. S., Yun, C. W., Lee, H. J., Noh, H., Lee, S. J., Han, H. J., & Lee, S. H. (2016). Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein. Scientific Reports, 6, 39838. DOI: https://doi.org/10.1038/srep39838

Zhang, D., Cheng, C., Cao, M., Wang, T., Chen, X., Zhao, Y., Wang, B., Ren, Y., Liu, D., Liu, L., Chen, X., Liu, F., Zhou, Q., Tian, G., Li, Q., Guo, C., Li, H., Wang, J., Cheng, R., Hu, D., & Zhang, M. (2020). TXNIP hypomethylation and its interaction with obesity and hypertriglyceridemia increase type 2 diabetes mellitus risk: A nested case-control study. Journal of Diabetes, 12(7), 512–520. DOI: https://doi.org/10.1111/1753-0407.13021

Zhang, M., Lv, X. Y., Li, J., Xu, Z. G., Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 704045. DOI: https://doi.org/10.1155/2008/704045

Published

2025-12-14

Data Availability Statement

Data available on request

How to Cite

Bhowmick, A., Dutta, K., Hossain, R., Halder, E. ., Banjerjee, P., Hossain, T., Khatun, M., Nigar Sultana, & Manoj Mandal. (2025). Evaluation of anti-obesogenic and anti-diabetic effects of tauroursodeoxycholic acid in Swiss albino rats: possible blockage of CHOP-dependent mitochondrial shuttling of TBP-2 and antagonism of streptozotocin-induced type 2 diabetes. Journal of Chemistry Insights and Discoveries, 2(01), 1-7. https://doi.org/10.71193/jcid.20250009

Similar Articles

You may also start an advanced similarity search for this article.