Molecular Mechanisms of Genistein in Breast Cancer: From Oxidative Stress to Oncogenic Pathway Inhibition
DOI:
https://doi.org/10.71193/jcid.20250006Keywords:
Genistein, isoflavone, oxidative stress, breast cancer, cytotoxicity, botanical sourcesAbstract
Genistein (GT), a soy-derived isoflavone, have received attention due to their possible anticancer effects. The present research is designed to explore the anticancer potential of GT in the therapeutic management of breast cancer (BC) with molecular mechanisms. For this, data have been collected from plausible different online databases, including PubMed, Web of Science, Google Scholar, PubChem, ScienceDirect, Scopus, Springer Link, and Wiley Online. The findings highlight GT’s potential to reduce oxidative damage, induce apoptosis, and modulate the cell lifecycle in BC cells. It inhibits cancer cell proliferation by affecting the human epidermal growth factor receptor 2 (HER2), phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT), and hedgehog regulatory pathways. Moreover, GT exhibits promising pharmacokinetic properties, including high intestinal absorption (95.5%) and strong Caco-2 permeability, with metabolism primarily via CYP1A2 and CYP2C19. However, its poor blood-brain barrier (BBB) permeability and low water solubility present difficulties to the systemic bioavailability. Toxicological investigations demonstrate a dose-dependent effect of GT, with large dosages causing toxicity and low concentrations showing therapeutic potential. Clinical studies emphasize its complex involvement in BC, with differing findings on benefits and risks, indicating the need for additional safety and efficacy study.
Downloads
References
Ahmad, A., Asad, S. F., Singh, S., & Hadi, S. M. (2000). DNA breakage by resveratrol and Cu (II): reaction mechanism and bacteriophage inactivation. Cancer letters, 154(1), 29-37. DOI: https://doi.org/10.1016/S0304-3835(00)00351-7
Akhondzadeh, S. (2016). The importance of clinical trials in drug development. Avicenna journal of medical biotechnology, 8(4), 151.
Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E., & Mallei, M. I. (2021). DNA damage/repair management in cancers. Advances in Medical Biochemistry, Genomics, Physiology, and Pathology, 309 DOI: https://doi.org/10.1201/9781003180449-12
An, W., Lai, H., Zhang, Y., Liu, M., Lin, X., & Cao, S. (2019). Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Frontiers in pharmacology, 10, 758. https://doi.org/10.3389/fphar.2019.00758 DOI: https://doi.org/10.3389/fphar.2019.00758
Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., ... & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15-23. DOI: https://doi.org/10.1016/j.breast.2022.08.010
Arome, D., & Chinedu, E. (2013). The importance of toxicity testing. Journal of Pharmaceutical and BioSciences, 4, 146-148.
Asgharian, P., Tazekand, A. P., Hosseini, K., Forouhandeh, H., Ghasemnejad, T., Ranjbar, M., Hasan, M., Kumar, M., Beirami, S. M., Tarhriz, V., Soofiyani, S. R., Kozhamzharova, L., Sharifi-Rad, J., Calina, D., & Cho, W. C. (2022). Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer cell international, 22(1), 257. https://doi.org/10.1186/s12935-022-02677-w DOI: https://doi.org/10.1186/s12935-022-02677-w
Aster, J. C., Pear, W. S., & Blacklow, S. C. (2017). The Varied Roles of Notch in Cancer. Annual review of pathology, 12, 245–275. https://doi.org/10.1146/annurev-pathol-052016-100127 DOI: https://doi.org/10.1146/annurev-pathol-052016-100127
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce, & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature reviews. Drug discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z DOI: https://doi.org/10.1038/s41573-020-00114-z
Bai, J., Li, Y., & Zhang, G. (2017). Cell cycle regulation and anticancer drug discovery. Cancer biology & medicine, 14(4), 348. DOI: https://doi.org/10.20892/j.issn.2095-3941.2017.0033
Benedetti, M. S., Whomsley, R., Poggesi, I., Cawello, W., Mathy, F. X., Delporte, M. L., Papeleu, P., & Watelet, J. B. (2009). Drug metabolism and pharmacokinetics. Drug metabolism reviews, 41(3), 344–390. https://doi.org/10.1080/10837450902891295 DOI: https://doi.org/10.1080/10837450902891295
Bhat, S. S., Prasad, S. K., Shivamallu, C., Prasad, K. S., Syed, A., Reddy, P., ... & Amachawadi, R. G. (2021). Genistein: a potent anti-breast cancer agent. Current Issues in Molecular Biology, 43(3), 1502-1517. DOI: https://doi.org/10.3390/cimb43030106
Bhuia, M. S., Aktar, M. A., Chowdhury, R., Ferdous, J., Rahman, M. A., Al Hasan, M. S., & Islam, M. T. (2023a). Therapeutic potentials of ononin with mechanistic insights: A comprehensive review. Food Bioscience, 56, 103302. DOI: https://doi.org/10.1016/j.fbio.2023.103302
Bhuia, M. S., Rahaman, M. M., Islam, T., Bappi, M. H., Sikder, M. I., Hossain, K. N., Akter, F., Al Shamsh Prottay, A., Rokonuzzman, M., Gürer, E. S., Calina, D., Islam, M. T., & Sharifi-Rad, J. (2023b). Neurobiological effects of gallic acid: current perspectives. Chinese medicine, 18(1), 27. https://doi.org/10.1186/s13020-023-00735-7 DOI: https://doi.org/10.1186/s13020-023-00735-7
Billy, F., & Clairambault, J. (2013). Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete and Continuous Dynamical Systems-Series B, 18(4), 865-889. DOI: https://doi.org/10.3934/dcdsb.2013.18.865
Bolca, S., Urpi-Sarda, M., Blondeel, P., Roche, N., Vanhaecke, L., Possemiers, S., Al-Maharik, N., Botting, N., De Keukeleire, D., Bracke, M., Heyerick, A., Manach, C., & Depypere, H. (2010). Disposition of soy isoflavones in normal human breast tissue. The American journal of clinical nutrition, 91(4), 976–984. https://doi.org/10.3945/ajcn.2009.28854 DOI: https://doi.org/10.3945/ajcn.2009.28854
Brierley, M. E. E., Sansom‐Daly, U. M., Baenziger, J., McGill, B., & Wakefield, C. E. (2019). Impact of physical appearance changes reported by adolescent and young adult cancer survivors: A qualitative analysis. European Journal of Cancer Care, 28(4), e13052. DOI: https://doi.org/10.1111/ecc.13052
Brown, E. J., & Baltimore, D. (2003). Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes & development, 17(5), 615–628. https://doi.org/10.1101/gad.1067403 DOI: https://doi.org/10.1101/gad.1067403
Brown, G. (2021). Oncogenes, proto-oncogenes, and lineage restriction of cancer stem cells. International Journal of Molecular Sciences, 22(18), 9667. DOI: https://doi.org/10.3390/ijms22189667
Buga, A. M., Docea, A. O., Albu, C., Malin, R. D., Branisteanu, D. E., Ianosi, G., Ianosi, S. L., Iordache, A., & Calina, D. (2019). Molecular and cellular stratagem of brain metastases associated with melanoma. Oncology letters, 17(5), 4170–4175. https://doi.org/10.3892/ol.2019.9933 DOI: https://doi.org/10.3892/ol.2019.9933
Burguin, A., Diorio, C., & Durocher, F. (2021). Breast cancer treatments: updates and new challenges. Journal of personalized medicine, 11(8), 808. DOI: https://doi.org/10.3390/jpm11080808
Cao, W., Chen, H. D., Yu, Y. W., Li, N., & Chen, W. Q. (2021). Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chinese medical journal, 134(07), 783-791. DOI: https://doi.org/10.1097/CM9.0000000000001474
Chandrasekharan, S., & Aglin, A. (2013). Pharmacokinetics of dietary isoflavones. J. Steroids Hormon. Sci. S, 12.
Chandrasekharan, S., & Aglin, A. (2013). Pharmacokinetics of dietary isoflavones. J. Steroids Hormon. Sci. S, 12. DOI: https://doi.org/10.4172/2157-7536.S12-004
Chen, J., Duan, Y., Zhang, X., Ye, Y., Ge, B., & Chen, J. (2015a). Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food & function, 6(3), 995-1000. DOI: https://doi.org/10.1039/C4FO01141D
Chen, J., Lin, C., Yong, W., Ye, Y., & Huang, Z. (2015b). Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 35(2), 722–728. https://doi.org/10.1159/000369732 DOI: https://doi.org/10.1159/000369732
Chinni, S. R., Alhasan, S. A., Multani, A. S., Pathak, S., & Sarkar, F. H. (2003). Pleotropic effects of genistein on MCF-7 breast cancer cells. International journal of molecular medicine, 12(1), 29-34. https://doi.org/10.3892/ijmm.12.1.29 DOI: https://doi.org/10.3892/ijmm.12.1.29
Choi, E. J., & Kim, G. H. (2013). Antiproliferative activity of daidzein and genistein may be related to ERα/c-erbB-2 expression in human breast cancer cells. Molecular medicine reports, 7(3), 781–784. https://doi.org/10.3892/mmr.2013.1283 DOI: https://doi.org/10.3892/mmr.2013.1283
Ciria-Suarez, L., Jiménez-Fonseca, P., Palacín-Lois, M., Antoñanzas-Basa, M., Fernández-Montes, A., Manzano-Fernández, A., ... & Calderon, C. (2021). Breast cancer patient experiences through a journey map: A qualitative study. PloS one, 16(9), e0257680. DOI: https://doi.org/10.1371/journal.pone.0257680
Cragg, G. M., & Pezzuto, J. M. (2016). Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Medical principles and practice : international journal of the Kuwait University, Health Science Centre, 25 Suppl 2(Suppl 2), 41–59. https://doi.org/10.1159/000443404 DOI: https://doi.org/10.1159/000443404
Dahan, A., Beig, A., Lindley, D., & Miller, J. M. (2016). The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Advanced drug delivery reviews, 101, 99–107. https://doi.org/10.1016/j.addr.2016.04.018 DOI: https://doi.org/10.1016/j.addr.2016.04.018
Das, N., Mishra, S. K., Bishayee, A., Ali, E. S., & Bishayee, A. (2021). The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharmaceutica Sinica B, 11(7), 1740-1766. DOI: https://doi.org/10.1016/j.apsb.2020.10.012
de la Parra, C., Castillo-Pichardo, L., Cruz-Collazo, A., Cubano, L., Redis, R., Calin, G. A., & Dharmawardhane, S. (2016). Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutrition and cancer, 68(1), 154–164. https://doi.org/10.1080/01635581.2016.1115104 DOI: https://doi.org/10.1080/01635581.2016.1115104
De Ligt, K. M., Heins, M., Verloop, J., Ezendam, N. P. M., Smorenburg, C. H., Korevaar, J. C., & Siesling, S. (2019). The impact of health symptoms on health-related quality of life in early-stage breast cancer survivors. Breast cancer research and treatment, 178, 703-711. DOI: https://doi.org/10.1007/s10549-019-05433-3
de Oliveira M. R. (2016). Evidence for genistein as a mitochondriotropic molecule. Mitochondrion, 29, 35–44. https://doi.org/10.1016/j.mito.2016.05.005 DOI: https://doi.org/10.1016/j.mito.2016.05.005
Delmonte, P., Perry, J., & Rader, J. I. (2006). Determination of isoflavones in dietary supplements containing soy, Red Clover and kudzu: extraction followed by basic or acid hydrolysis. Journal of chromatography. A, 1107(1-2), 59–69. https://doi.org/10.1016/j.chroma.2005.11.060 DOI: https://doi.org/10.1016/j.chroma.2005.11.060
Dijkstra, S. C., Lampe, J. W., Ray, R. M., Brown, R., Wu, C., Li, W., Chen, C., King, I. B., Gao, D., Hu, Y., Shannon, J., Wähälä, K., & Thomas, D. B. (2010). Biomarkers of dietary exposure are associated with lower risk of breast fibroadenomas in Chinese women. The Journal of nutrition, 140(7), 1302–1310. https://doi.org/10.3945/jn.109.119727 DOI: https://doi.org/10.3945/jn.109.119727
Downward J. (2008). Targeting RAS and PI3K in lung cancer. Nature medicine, 14(12), 1315–1316. https://doi.org/10.1038/nm1208-1315 DOI: https://doi.org/10.1038/nm1208-1315
Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337 DOI: https://doi.org/10.1080/01926230701320337
Elshafie, H. S., Camele, I., & Mohamed, A. A. (2023). A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. International journal of molecular sciences, 24(4), 3266. https://doi.org/10.3390/ijms24043266 DOI: https://doi.org/10.3390/ijms24043266
Elson, D. J., Nguyen, B. D., Korjeff, N. A., Wilferd, S. F., Puig-Sanvicens, V., Sang Jang, H., Bernales, S., Chakravarty, S., Belmar, S., Ureta, G., Finlay, D., Plaisier, C. L., & Kolluri, S. K. (2023). Suppression of Ah Receptor (AhR) increases the aggressiveness of TNBC cells and 11-Cl-BBQ-activated AhR inhibits their growth. Biochemical pharmacology, 215, 115706. https://doi.org/10.1016/j.bcp.2023.115706 DOI: https://doi.org/10.1016/j.bcp.2023.115706
Engelman J. A. (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature reviews. Cancer, 9(8), 550–562. https://doi.org/10.1038/nrc2664 DOI: https://doi.org/10.1038/nrc2664
Fan, P., Fan, S., Wang, H., Mao, J., Shi, Y., Ibrahim, M. M., Ma, W., Yu, X., Hou, Z., Wang, B., & Li, L. (2013). Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway. Stem cell research & therapy, 4(6), 146. https://doi.org/10.1186/scrt357 DOI: https://doi.org/10.1186/scrt357
Fang, Y., Zhang, Q., Wang, X., Yang, X., Wang, X., Huang, Z., Jiao, Y., & Wang, J. (2016). Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. International journal of oncology, 48(3), 1016–1028. https://doi.org/10.3892/ijo.2016.3327 DOI: https://doi.org/10.3892/ijo.2016.3327
Feitelson, M. A., Arzumanyan, A., Kulathinal, R. J., Blain, S. W., Holcombe, R. F., Mahajna, J., Marino, M., Martinez-Chantar, M. L., Nawroth, R., Sanchez-Garcia, I., Sharma, D., Saxena, N. K., Singh, N., Vlachostergios, P. J., Guo, S., Honoki, K., Fujii, H., Georgakilas, A. G., Bilsland, A., Amedei, A., … Nowsheen, S. (2015). Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in cancer biology, 35 Suppl(Suppl), S25–S54. https://doi.org/10.1016/j.semcancer.2015.02.006 DOI: https://doi.org/10.1016/j.semcancer.2015.02.006
Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., ... & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & diseases, 5(2), 77-106. DOI: https://doi.org/10.1016/j.gendis.2018.05.001
Gattringer, J., Gruber, C. W., & Hellinger, R. (2023). Peptide modulators of cell migration: Overview, applications and future development. Drug discovery today, 28(5), 103554. https://doi.org/10.1016/j.drudis.2023.103554 DOI: https://doi.org/10.1016/j.drudis.2023.103554
Gewirtz D. A. (2014). The four faces of autophagy: implications for cancer therapy. Cancer research, 74(3), 647–651. https://doi.org/10.1158/0008-5472.CAN-13-2966 DOI: https://doi.org/10.1158/0008-5472.CAN-13-2966
Gómez-López, S., Lerner, R. G., & Petritsch, C. (2014). Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cellular and Molecular Life Sciences, 71, 575-597. DOI: https://doi.org/10.1007/s00018-013-1386-1
Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature reviews. Drug discovery, 12(12), 931–947. https://doi.org/10.1038/nrd4002 DOI: https://doi.org/10.1038/nrd4002
Goyal, A., Dubey, N., Agrawal, A., Sharma, R., & Verma, A. (2024). An Insight into the Promising Therapeutic Potential of Chicoric Acid. Current pharmaceutical biotechnology, 25(13), 1708–1718. https://doi.org/10.2174/0113892010280616231127075921 DOI: https://doi.org/10.2174/0113892010280616231127075921
Greaves, M. F. (2001). Cancer: the evolutionary legacy. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780192628350.001.0001
Gustafson, A. M., Soldi, R., Anderlind, C., Scholand, M. B., Qian, J., Zhang, X., Cooper, K., Walker, D., McWilliams, A., Liu, G., Szabo, E., Brody, J., Massion, P. P., Lenburg, M. E., Lam, S., Bild, A. H., & Spira, A. (2010). Airway PI3K pathway activation is an early and reversible event in lung cancer development. Science translational medicine, 2(26), 26ra25. https://doi.org/10.1126/scitranslmed.3000251 DOI: https://doi.org/10.1126/scitranslmed.3000251
Hussain, S. M., Braydich‐Stolle, L. K., Schrand, A. M., Murdock, R. C., Yu, K. O., Mattie, D. M., ... & Terrones, M. (2009). Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Advanced Materials, 21(16), 1549-1559. DOI: https://doi.org/10.1002/adma.200801395
Islam, M. T., Rahman, M. T., Mia, E., Kamli, H., Hasan, A. M. W., Uddin, M. B., Sayeed, M. A., Hasan, A., Emon, Y., Yana, N. T., Akter, M. S., Hossan, R., Al Hasan, M. S., & Bhuia, M. S. (2025). Anticancer potential of daidzin: a comprehensive literature review. Medical oncology (Northwood, London, England), 42(8), 285. https://doi.org/10.1007/s12032-025-02839-6 DOI: https://doi.org/10.1007/s12032-025-02839-6
Jahan, N., Mandal, M., Rakib, I. H., Al Hasan, M. S., Mia, E., Yana, N. T., Alfaifi, M., Altemani, F. H., Hossan, R., Sumaya, U. H., Hasan, A. M. W., Sayeed, M. A., Mou, M. A., Islam, M. T., & Bhuia, M. S. (2025). Oleuropein modulates anti-inflammatory activity of celecoxib and ketoprofen through cyclooxygenase pathway: in vivo, in silico and pharmacokinetics approaches. Naunyn-Schmiedeberg's archives of pharmacology, 10.1007/s00210-025-04309-2. Advance online publication. https://doi.org/10.1007/s00210-025-04309-2 DOI: https://doi.org/10.1007/s00210-025-04309-2
Jaiswal, N., Akhtar, J., Singh, S. P., & Ahsan, F. (2019). An overview on genistein and its various formulations. Drug research, 69(06), 305-313. DOI: https://doi.org/10.1055/a-0797-3657
Jiang, H., Zuo, J., Li, B., Chen, R., Luo, K., Xiang, X., Lu, S., Huang, C., Liu, L., Tang, J., & Gao, F. (2023). Drug-induced oxidative stress in cancer treatments: Angel or devil?. Redox biology, 63, 102754. https://doi.org/10.1016/j.redox.2023.102754 DOI: https://doi.org/10.1016/j.redox.2023.102754
Jin, S. E., Son, Y. K., Min, B. S., Jung, H. A., & Choi, J. S. (2012). Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Archives of pharmacal research, 35(5), 823–837. https://doi.org/10.1007/s12272-012-0508-x DOI: https://doi.org/10.1007/s12272-012-0508-x
Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J., & Hoyt, J. E. (1997). A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. Journal of alternative and complementary medicine (New York, N.Y.), 3(1), 7–12. https://doi.org/10.1089/acm.1997.3.7 DOI: https://doi.org/10.1089/acm.1997.3.7
Khan, S. A., Chatterton, R. T., Michel, N., Bryk, M., Lee, O., Ivancic, D., Heinz, R., Zalles, C. M., Helenowski, I. B., Jovanovic, B. D., Franke, A. A., Bosland, M. C., Wang, J., Hansen, N. M., Bethke, K. P., Dew, A., Coomes, M., & Bergan, R. C. (2012). Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer prevention research (Philadelphia, Pa.), 5(2), 309–319. https://doi.org/10.1158/1940-6207.CAPR-11-0251 DOI: https://doi.org/10.1158/1940-6207.CAPR-11-0251
Khazaei, M., Hosseini, M. S., Haghighi, A. M., & Misaghi, M. (2023). Nanosensors and their applications in early diagnosis of cancer. Sensing and Bio-Sensing Research, 100569. DOI: https://doi.org/10.1016/j.sbsr.2023.100569
Kim, D. J., Seok, S. H., Baek, M. W., Lee, H. Y., Na, Y. R., Park, S. H., Lee, H. K., Dutta, N. K., Kawakami, K., & Park, J. H. (2009). Developmental toxicity and brain aromatase induction by high genistein concentrations in zebrafish embryos. Toxicology mechanisms and methods, 19(3), 251–256. https://doi.org/10.1080/15376510802563330 DOI: https://doi.org/10.1080/15376510802563330
Kim, G. Y., Suh, J., Jang, J. H., Kim, D. H., Park, O. J., Park, S. K., & Surh, Y. J. (2019). Genistein Inhibits Proliferation of BRCA1 Mutated Breast Cancer Cells: The GPR30-Akt Axis as a Potential Target. Journal of cancer prevention, 24(4), 197–207. https://doi.org/10.15430/JCP.2019.24.4.197 DOI: https://doi.org/10.15430/JCP.2019.24.4.197
Kim, K. H., Dodsworth, C., Paras, A., & Burton, B. K. (2013). High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Molecular genetics and metabolism, 109(4), 382–385. https://doi.org/10.1016/j.ymgme.2013.06.012 DOI: https://doi.org/10.1016/j.ymgme.2013.06.012
Kneer, R., Poulev, A. A., Olesinski, A., & Raskin, I. (1999). Characterization of the elicitor-induced biosynthesis and secretion of genistein from roots of Lupinus luteus L. Journal of experimental botany, 50(339), 1553-1559. DOI: https://doi.org/10.1093/jxb/50.339.1553
Kong, Q., Beel, J. A., & Lillehei, K. O. (2000). A threshold concept for cancer therapy. Medical hypotheses, 55(1), 29-35. DOI: https://doi.org/10.1054/mehy.1999.0982
Kothari, C., Diorio, C., & Durocher, F. (2020). The Importance of Breast Adipose Tissue in Breast Cancer. International journal of molecular sciences, 21(16), 5760. https://doi.org/10.3390/ijms21165760 DOI: https://doi.org/10.3390/ijms21165760
Krakhmal, N. V., Zavyalova, M. V., Denisov, E. V., Vtorushin, S. V., & Perelmuter, V. M. (2015). Cancer Invasion: Patterns and Mechanisms. Acta naturae, 7(2), 17–28. DOI: https://doi.org/10.32607/20758251-2015-7-2-17-28
Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschläger, M., & Dolznig, H. (2013). In vitro cell migration and invasion assays. Mutation research, 752(1), 10–24. https://doi.org/10.1016/j.mrrev.2012.08.001 DOI: https://doi.org/10.1016/j.mrrev.2012.08.001
Kwon, S. H., Kang, M. J., Huh, J. S., Ha, K. W., Lee, J. R., Lee, S. K., Lee, B. S., Han, I. H., Lee, M. S., Lee, M. W., Lee, J., & Choi, Y. W. (2007). Comparison of oral bioavailability of genistein and genistin in rats. International journal of pharmaceutics, 337(1-2), 148–154. https://doi.org/10.1016/j.ijpharm.2006.12.046 DOI: https://doi.org/10.1016/j.ijpharm.2006.12.046
Li, Y., Meeran, S. M., Patel, S. N., Chen, H., Hardy, T. M., & Tollefsbol, T. O. (2013). Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Molecular cancer, 12, 9. https://doi.org/10.1186/1476-4598-12-9 DOI: https://doi.org/10.1186/1476-4598-12-9
Lim, K. H., & Staudt, L. M. (2013). Toll-like receptor signaling. Cold Spring Harbor perspectives in biology, 5(1), a011247. https://doi.org/10.1101/cshperspect.a011247 DOI: https://doi.org/10.1101/cshperspect.a011247
Lovelace, D. L., McDaniel, L. R., & Golden, D. (2019). Long‐term effects of breast cancer surgery, treatment, and survivor care. Journal of midwifery & women's health, 64(6), 713-724. DOI: https://doi.org/10.1111/jmwh.13012
Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers, 13(17), 4287. DOI: https://doi.org/10.3390/cancers13174287
Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer cell, 4(4), 257–262. https://doi.org/10.1016/s1535-6108(03)00248-4 DOI: https://doi.org/10.1016/S1535-6108(03)00248-4
Lutz, M., Martínez, A., & Martínez, E. A. (2013). Daidzein and Genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Industrial Crops and Products, 49, 117-121. DOI: https://doi.org/10.1016/j.indcrop.2013.04.023
Ma, X., & Yu, H. (2006). Cancer issue: global burden of cancer. The Yale journal of biology and medicine, 79(3-4), 85.
Mahajan, N., Koul, B., Gupta, P., Shah, B. A., & Singh, J. (2022). Psoralea corylifolia L.: Panacea to several maladies. South African Journal of Botany, 149, 963-993. DOI: https://doi.org/10.1016/j.sajb.2022.01.024
Manchado, E., Guillamot, M., & Malumbres, M. (2012). Killing cells by targeting mitosis. Cell death & differentiation, 19(3), 369-377. DOI: https://doi.org/10.1038/cdd.2011.197
Mazurakova, A., Koklesova, L., Samec, M., Kudela, E., Kajo, K., Skuciova, V., ... & Kubatka, P. (2022). Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA Journal, 13(2), 315-334. DOI: https://doi.org/10.1007/s13167-022-00277-2
McGaw, L. J., Elgorashi, E. E., & Eloff, J. N. (2014). Cytotoxicity of African medicinal plants against normal animal and human cells. In Toxicological survey of African medicinal plants (pp. 181-233). Elsevier. https://doi.org/10.1016/B978-0-12-800018-2.00008-X DOI: https://doi.org/10.1016/B978-0-12-800018-2.00008-X
McMichael-Phillips, D. F., Harding, C., Morton, M., Roberts, S. A., Howell, A., Potten, C. S., & Bundred, N. J. (1998). Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. The American journal of clinical nutrition, 68(6 Suppl), 1431S–1435S. https://doi.org/10.1093/ajcn/68.6.1431S DOI: https://doi.org/10.1093/ajcn/68.6.1431S
Meng, Y., Wang, W., Kang, J., Wang, X., & Sun, L. (2017). Role of the PI3K/AKT signalling pathway in apoptotic cell death in the cerebral cortex of streptozotocin-induced diabetic rats. Experimental and therapeutic medicine, 13(5), 2417–2422. https://doi.org/10.3892/etm.2017.4259 DOI: https://doi.org/10.3892/etm.2017.4259
Mitra, A. K., Agrahari, V., Mandal, A., Cholkar, K., Natarajan, C., Shah, S., ... & Pal, D. (2015). Novel delivery approaches for cancer therapeutics. Journal of controlled release, 219, 248-268. DOI: https://doi.org/10.1016/j.jconrel.2015.09.067
Montales, M. T., Rahal, O. M., Nakatani, H., Matsuda, T., & Simmen, R. C. (2013). Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells. The Journal of endocrinology, 218(1), 135–149. https://doi.org/10.1530/JOE-12-0520 DOI: https://doi.org/10.1530/JOE-12-0520
Motlekar, N., Khan, M. A., & Youan, B. B. C. (2006). Preparation and characterization of genistein containing poly (ethylene glycol) microparticles. Journal of applied polymer science, 101(3), 2070-2078. DOI: https://doi.org/10.1002/app.23827
Naeem, A., Hu, P., Yang, M., Zhang, J., Liu, Y., Zhu, W., & Zheng, Q. (2022). Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules (Basel, Switzerland), 27(23), 8367. https://doi.org/10.3390/molecules27238367 DOI: https://doi.org/10.3390/molecules27238367
Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of natural products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285 DOI: https://doi.org/10.1021/acs.jnatprod.9b01285
Okazaki, K., Okazaki, S., Nakamura, H., Kitamura, Y., Hatayama, K., Wakabayashi, S., Tsuda, T., Katsumata, T., Nishikawa, A., & Hirose, M. (2002). A repeated 28-day oral dose toxicity study of genistein in rats, based on the 'Enhanced OECD Test Guideline 407' for screening endocrine-disrupting chemicals. Archives of toxicology, 76(10), 553–559. https://doi.org/10.1007/s00204-002-0376-0 DOI: https://doi.org/10.1007/s00204-002-0376-0
Ono, M., Ejima, K., Higuchi, T., Takeshima, M., Wakimoto, R., & Nakano, S. (2017). Equol Enhances Apoptosis-inducing Activity of Genistein by Increasing Bax/Bcl-xL Expression Ratio in MCF-7 Human Breast Cancer Cells. Nutrition and cancer, 69(8), 1300–1307. https://doi.org/10.1080/01635581.2017.1367945 DOI: https://doi.org/10.1080/01635581.2017.1367945
Pan, H., Zhou, W., He, W., Liu, X., Ding, Q., Ling, L., Zha, X., & Wang, S. (2012). Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. International journal of molecular medicine, 30(2), 337–343. https://doi.org/10.3892/ijmm.2012.990 DOI: https://doi.org/10.3892/ijmm.2012.990
Pantaleão, S. Q., Fernandes, P. O., Gonçalves, J. E., Maltarollo, V. G., & Honorio, K. M. (2022). Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review. ChemMedChem, 17(1), e202100542. https://doi.org/10.1002/cmdc.202100542 DOI: https://doi.org/10.1002/cmdc.202100542
Papaliagkas, V., Anogianaki, A., Anogianakis, G., & Ilonidis, G. (2007). The proteins and the mechanisms of apoptosis: a mini-review of the fundamentals. Hippokratia, 11(3), 108–113.
Patil, V. N., Somkuwar, S. R., & Deokule, S. S. (2016). High frequency of multiple shoot induction and genistein and daidzein in Desmodium gangeticum (L.) Dc. by using different concentrations of BAP. Sciences, 6, 101-104.
Patlewicz, G., & Fitzpatrick, J. M. (2016). Current and Future Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity. Chemical research in toxicology, 29(4), 438–451. https://doi.org/10.1021/acs.chemrestox.5b00388 DOI: https://doi.org/10.1021/acs.chemrestox.5b00388
Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: A Target for Anticancer Therapy. International journal of molecular sciences, 19(2), 448. https://doi.org/10.3390/ijms19020448 DOI: https://doi.org/10.3390/ijms19020448
Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4), 603–619. https://doi.org/10.18632/aging.100934 DOI: https://doi.org/10.18632/aging.100934
Polacheck, W. J., Zervantonakis, I. K., & Kamm, R. D. (2013). Tumor cell migration in complex microenvironments. Cellular and molecular life sciences : CMLS, 70(8), 1335–1356. https://doi.org/10.1007/s00018-012-1115-1 DOI: https://doi.org/10.1007/s00018-012-1115-1
Pomfrey, V. J. (2013). Genistein: A Multimechanistic Anticancer Agent from Soya.
Prietsch, R. F., Monte, L. G., da Silva, F. A., Beira, F. T., Del Pino, F. A., Campos, V. F., Collares, T., Pinto, L. S., Spanevello, R. M., Gamaro, G. D., & Braganhol, E. (2014). Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Molecular and cellular biochemistry, 390(1-2), 235–242. https://doi.org/10.1007/s11010-014-1974-x DOI: https://doi.org/10.1007/s11010-014-1974-x
Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley interdisciplinary reviews. Computational molecular science, 6(2), 147–172. https://doi.org/10.1002/wcms.1240 DOI: https://doi.org/10.1002/wcms.1240
Reichel, A., & Lienau, P. (2016). Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety. Handbook of experimental pharmacology, 232, DOI: https://doi.org/10.1007/164_2015_26
Resnicoff, M., Ambrose, D., Coppola, D., & Rubin, R. (1993). Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Laboratory investigation; a journal of technical methods and pathology, 69(6), 756–760.
Roberts, D. M., & Buckley, N. A. (2007). Pharmacokinetic considerations in clinical toxicology: clinical applications. Clinical pharmacokinetics, 46(11), 897–939. https://doi.org/10.2165/00003088-200746110-00001 DOI: https://doi.org/10.2165/00003088-200746110-00001
Romagnolo, D. F., Donovan, M. G., Papoutsis, A. J., Doetschman, T. C., & Selmin, O. I. (2017). Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Current developments in nutrition, 1(6), e000562. https://doi.org/10.3945/cdn.117.000562 DOI: https://doi.org/10.3945/cdn.117.000562
Rosenfeldt, M. T., & Ryan, K. M. (2011). The multiple roles of autophagy in cancer. Carcinogenesis, 32(7), 955–963. https://doi.org/10.1093/carcin/bgr031 DOI: https://doi.org/10.1093/carcin/bgr031
Roy, H., & Nandi, S. (2019). In-Silico Modeling in Drug Metabolism and Interaction: Current Strategies of Lead Discovery. Current pharmaceutical design, 25(31), 3292–3305. https://doi.org/10.2174/1381612825666190903155935 DOI: https://doi.org/10.2174/1381612825666190903155935
Roy, M., Datta, A., Roy, M., & Datta, A. (2019). Drugs and phytochemicals. Cancer Genetics and Therapeutics: Focus on Phytochemicals, 83-109. DOI: https://doi.org/10.1007/978-981-13-9471-3_4
Salminen, A., Kaarniranta, K., & Kauppinen, A. (2013). Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing research reviews, 12(2), 520–534. https://doi.org/10.1016/j.arr.2012.11.004 DOI: https://doi.org/10.1016/j.arr.2012.11.004
Sarasquete, C., Úbeda-Manzanaro, M., & Ortiz-Delgado, J. B. (2018). Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 211, 57–67. https://doi.org/10.1016/j.cbpc.2018.05.012 DOI: https://doi.org/10.1016/j.cbpc.2018.05.012
Sarfati, D., Koczwara, B., & Jackson, C. (2016). The impact of comorbidity on cancer and its treatment. CA: a cancer journal for clinicians, 66(4), 337-350. DOI: https://doi.org/10.3322/caac.21342
Sari, I. N., Phi, L. T. H., Jun, N., Wijaya, Y. T., Lee, S., & Kwon, H. Y. (2018). Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells, 7(11), 208. https://doi.org/10.3390/cells7110208 DOI: https://doi.org/10.3390/cells7110208
Sarkar, F. H., & Li, Y. (2006). Markers of apoptosis. Breast Cancer Research Protocols, 147-160. DOI: https://doi.org/10.1385/1-59259-969-9:147
Sayed, S., Fan, S., Moloo, Z., Wasike, R., Bird, P., Saleh, M., ... & Yang, X. R. (2021). Breast cancer risk factors in relation to molecular subtypes in breast cancer patients from Kenya. Breast Cancer Research, 23(1), 1-17. DOI: https://doi.org/10.1186/s13058-021-01446-3
Schultz, A., Saville, B. R., Marsh, J. A., & Snelling, T. L. (2019). An introduction to clinical trial design. Paediatric respiratory reviews, 32, 30–35. https://doi.org/10.1016/j.prrv.2019.06.002 DOI: https://doi.org/10.1016/j.prrv.2019.06.002
Schwartz, G. K., & Shah, M. A. (2005). Targeting the cell cycle: a new approach to cancer therapy. Journal of clinical oncology, 23(36), 9408-9421. https://doi.org/10.1200/JCO.2005.01.5594 DOI: https://doi.org/10.1200/JCO.2005.01.5594
Setchell, K. D., Brown, N. M., Desai, P., Zimmer-Nechemias, L., Wolfe, B. E., Brashear, W. T., Kirschner, A. S., Cassidy, A., & Heubi, J. E. (2001). Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. The Journal of nutrition, 131(4 Suppl), 1362S–75S. https://doi.org/10.1093/jn/131.4.1362S DOI: https://doi.org/10.1093/jn/131.4.1362S
Setchell, K. D., Faughnan, M. S., Avades, T., Zimmer-Nechemias, L., Brown, N. M., Wolfe, B. E., Brashear, W. T., Desai, P., Oldfield, M. F., Botting, N. P., & Cassidy, A. (2003). Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. The American journal of clinical nutrition, 77(2), 411–419. https://doi.org/10.1093/ajcn/77.2.411 DOI: https://doi.org/10.1093/ajcn/77.2.411
Shailajan, S., Kumaria, S., Pednekar, S., Menon, S., Joshi, H., & Matani, A. (2014). Chromatographic evaluation of a phytoestrogen Genistein from Flemingia vestita Benth: An endemic plant of Northeast India. Phcog Commn, 4(4), 2-8. DOI: https://doi.org/10.5530/pj.2016.1.10
Sharifi-Rad, J., Quispe, C., Imran, M., Rauf, A., Nadeem, M., Gondal, T. A., ... & Calina, D. (2021). Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxidative medicine and cellular longevity, 2021.
Sharifi-Rad, J., Quispe, C., Imran, M., Rauf, A., Nadeem, M., Gondal, T. A., Ahmad, B., Atif, M., Mubarak, M. S., Sytar, O., Zhilina, O. M., Garsiya, E. R., Smeriglio, A., Trombetta, D., Pons, D. G., Martorell, M., Cardoso, S. M., Razis, A. F. A., Sunusi, U., Kamal, R. M., … Calina, D. (2021). Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxidative medicine and cellular longevity, 2021, 3268136. https://doi.org/10.1155/2021/3268136 DOI: https://doi.org/10.1155/2021/3268136
Shen, G., Yu, H., Bian, G., Gao, M., Liu, L., Cheng, M., ... & Hu, S. (2013). Genistein inhibits the proliferation of human HER2-positive cancer cells by downregulating HER2 receptor. Funct Food Health Dis, 3, 291-9.
Shike, M., Doane, A. S., Russo, L., Cabal, R., Reis-Filho, J. S., Gerald, W., Cody, H., Khanin, R., Bromberg, J., & Norton, L. (2014). The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. Journal of the National Cancer Institute, 106(9), dju189. https://doi.org/10.1093/jnci/dju189 DOI: https://doi.org/10.1093/jnci/dju189
Shim, H. Y., Park, J. H., Paik, H. D., Nah, S. Y., Kim, D. S., & Han, Y. S. (2007). Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain–caspase and apoptosis signaling kinase 1–p38 mitogen-activated protein kinase activation cascades. Anti-cancer drugs, 18(6), 649-657. DOI: https://doi.org/10.1097/CAD.0b013e3280825573
Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2009). Studied enhancement strategies for phytoestrogens production in shake flasks by suspension culture of Psoralea corylifolia. Bioresource technology, 100(5), 1833–1839. https://doi.org/10.1016/j.biortech.2008.09.028 DOI: https://doi.org/10.1016/j.biortech.2008.09.028
Singh, B. N., & Malhotra, B. K. (2004). Effects of food on the clinical pharmacokinetics of anticancer agents: underlying mechanisms and implications for oral chemotherapy. Clinical pharmacokinetics, 43(15), 1127–1156. https://doi.org/10.2165/00003088-200443150-00005 DOI: https://doi.org/10.2165/00003088-200443150-00005
Stielow, M., Witczyńska, A., Kubryń, N., Fijałkowski, Ł., Nowaczyk, J., & Nowaczyk, A. (2023). The Bioavailability of Drugs-The Current State of Knowledge. Molecules (Basel, Switzerland), 28(24), 8038. https://doi.org/10.3390/molecules28248038 DOI: https://doi.org/10.3390/molecules28248038
Sun, H., Wang, Y., Cheff, D. M., Hall, M. D., & Shen, M. (2020). Predictive models for estimating cytotoxicity on the basis of chemical structures. Bioorganic & medicinal chemistry, 28(10), 115422. https://doi.org/10.1016/j.bmc.2020.115422 DOI: https://doi.org/10.1016/j.bmc.2020.115422
Swift, L. H., & Golsteyn, R. M. (2014). Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. International journal of molecular sciences, 15(3), 3403–3431. https://doi.org/10.3390/ijms15033403 DOI: https://doi.org/10.3390/ijms15033403
Tai, W., Mahato, R., & Cheng, K. (2010). The role of HER2 in cancer therapy and targeted drug delivery. Journal of controlled release : official journal of the Controlled Release Society, 146(3), 264–275. https://doi.org/10.1016/j.jconrel.2010.04.009 DOI: https://doi.org/10.1016/j.jconrel.2010.04.009
Theil, F. P., Guentert, T. W., Haddad, S., & Poulin, P. (2003). Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicology letters, 138(1-2), 29–49. https://doi.org/10.1016/s0378-4274(02)00374-0 DOI: https://doi.org/10.1016/S0378-4274(02)00374-0
Tian, Z., Wan, M., Wang, Z., & Wang, B. (2004). The preparation of genistein and LC‐MS/MS on‐line analysis. Drug development research, 61(1), 6-12. DOI: https://doi.org/10.1002/ddr.10332
Tuli, H. S., Tuorkey, M. J., Thakral, F., Sak, K., Kumar, M., Sharma, A. K., ... & Bishayee, A. (2019). Molecular mechanisms of action of genistein in cancer: Recent advances. Frontiers in Pharmacology, 10, 1336. DOI: https://doi.org/10.3389/fphar.2019.01336
Ullah, M. F., Ahmad, A., Zubair, H., Khan, H. Y., Wang, Z., Sarkar, F. H., & Hadi, S. M. (2011). Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Molecular nutrition & food research, 55(4), 553–559. https://doi.org/10.1002/mnfr.201000329 DOI: https://doi.org/10.1002/mnfr.201000329
Wegrzyn, G., Jakóbkiewicz-Banecka, J., Gabig-Cimińska, M., Piotrowska, E., Narajczyk, M., Kloska, A., Malinowska, M., Dziedzic, D., Gołebiewska, I., Moskot, M., & Wegrzyn, A. (2010). Genistein: a natural isoflavone with a potential for treatment of genetic diseases. Biochemical Society transactions, 38(2), 695–701. https://doi.org/10.1042/BST0380695 DOI: https://doi.org/10.1042/BST0380695
Wilkinson, L., & Gathani, T. (2022). Understanding breast cancer as a global health concern. The British Journal of Radiology, 95(1130), 20211033. DOI: https://doi.org/10.1259/bjr.20211033
Williams, G. H., & Stoeber, K. (2012). The cell cycle and cancer. The Journal of pathology, 226(2), 352-364.https://doi.org/10.1002/path.3022 DOI: https://doi.org/10.1002/path.3022
Xie, Q., Bai, Q., Zou, L. Y., Zhang, Q. Y., Zhou, Y., Chang, H., Yi, L., Zhu, J. D., & Mi, M. T. (2014). Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes, chromosomes & cancer, 53(5), 422–431. https://doi.org/10.1002/gcc.22154 DOI: https://doi.org/10.1002/gcc.22154
Yang, Z. J., Chee, C. E., Huang, S., & Sinicrope, F. A. (2011). The role of autophagy in cancer: therapeutic implications. Molecular cancer therapeutics, 10(9), 1533–1541. https://doi.org/10.1158/1535-7163.MCT-11-0047 DOI: https://doi.org/10.1158/1535-7163.MCT-11-0047
Yang, Z., Kulkarni, K., Zhu, W., & Hu, M. (2012). Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-cancer agents in medicinal chemistry, 12(10), 1264–1280. https://doi.org/10.2174/187152012803833107 DOI: https://doi.org/10.2174/187152012803833107
Ye, D., Li, Z., & Wei, C. (2018). Genistein inhibits the S-phase kinase-associated protein 2 expression in breast cancer cells. Experimental and therapeutic medicine, 15(1), 1069–1075. https://doi.org/10.3892/etm.2017.5489 DOI: https://doi.org/10.3892/etm.2017.5489
Yue, J., & López, J. M. (2020). Understanding MAPK Signaling Pathways in Apoptosis. International journal of molecular sciences, 21(7), 2346. https://doi.org/10.3390/ijms21072346 DOI: https://doi.org/10.3390/ijms21072346
Zhao, Q., Zhao, M., Parris, A. B., Xing, Y., & Yang, X. (2016). Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells. International journal of oncology, 49(3), 1203–1210. https://doi.org/10.3892/ijo.2016.3588 DOI: https://doi.org/10.3892/ijo.2016.3588
Downloads
Published
Data Availability Statement
N/A
Issue
Section
Categories
License
Copyright (c) 2025 Md. Sakib Al Hasan, Md Imran Hossain, Rakib Hossan, Hasna Banu, Khadija Akter, Md Showkoth Akbor, Proma Mandal, Md. Mizan, Asmaul Husna Bristy, Umme Habiba Sumaya (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
