Diterpenes as PTP1B Inhibitors for the Treatment of Diabetes Mellitus 2 and Obesity: An in-depth Literature Review and Computational Study
DOI:
https://doi.org/10.71193/jmct.20250006Keywords:
Diterpenes, PTP1B inhibitors, Diabetes mellitus, Molecular dockingAbstract
Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling pathways, reducing sensitivity to the enzyme and making it a promising therapeutic target for type 2 diabetes mellitus (DM2) and obesity treatment. This study aims to identify diterpenoids from natural sources as potential drug candidates for DM2 and obesity by inhibiting the PTP1B enzyme, evaluating drug-receptor interactions, and assessing pharmacokinetics through computational studies and literature review. A total of 96 diterpenes were analyzed for potential interactions and binding affinity with the PTP1B enzyme. The literature review utilized different electronic databases. Molecular docking was conducted to estimate binding affinities against PTP1B (PDB ID: 7LFO) and drug-receptor interactions and receptor-active sites were also examined. Physicochemical properties, drug-likeness, and pharmacokinetics of selected diterpenoids were predicted using SwissADME and ADMETlab 2.0 tools. Results showed IC50 values of selected diterpenes ranging from 0.90 ± 0.06 to 80.40 ± 0.60 µM, with the control oleanolic acid (OA) showing 4.71 ± 0.16 µM. In computational studies, compound 15 exhibited the highest binding affinity (–8.5 kcal/mol) toward PTP1B. Other compounds, including 17, 72, 27, 86, 85, 89, 91, 42, 43, 73, 90, 39, 51, 53, 20, 62, 67, 68, and 63, demonstrated elevated binding affinities of –8, –7.9, –7.8, –7.7, –7.7, –7.7, –7.6, –7.6, –7.6, –7.6, –7.5, –7.5, –7.5, –7.4, –7.4, –7.4, –7.4, and –7.4 kcal/mol respectively, where OA expressed binding energies of –7.7 kcal/mol.
Downloads
References
Abdjul, D. B., Yamazaki, H., Maarisit, W., Losung, F., Rotinsulu, H., Wewengkang, D. S., & Namikoshi, M. (2017). Eudesmanolide sesquiterpenes and protein tyrosine phosphatase 1B inhibitory ent-kaurene diterpenes from aerial parts of Indonesian Wedelia prostata. Phytochemistry Letters, 20, 191-195. DOI: https://doi.org/10.1016/j.phytol.2017.04.018
Ahmad, F., Azevedo, J. L., Cortright, R., Dohm, G. L., & Goldstein, B. J. (1997). Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. The Journal of clinical investigation, 100(2), 449-458. DOI: https://doi.org/10.1172/JCI119552
Al Hasan, M. S., Bhuia, M. S., Chowdhury, R., Husain, Z., Saifiuzzaman, M., Mia, E., Akbor, M. S., Yana, N. T., Islam, M. A., Ansari, S. A., Ansari, I. A., & Islam, M. T. (2025). Tangeretin enhances sedative activity of diazepam in Swiss mice through GABAA receptor interaction: In vivo and in silico approaches. Neuroscience, S0306-4522(25)00191-5. Advance online publication. https://doi.org/10.1016/j.neuroscience.2025.03.004 DOI: https://doi.org/10.1016/j.neuroscience.2025.03.004
Alam, U., Asghar, O., Azmi, S., & Malik, R. A. (2014). General aspects of diabetes mellitus. Handbook of clinical neurology, 126, 211-222. DOI: https://doi.org/10.1016/B978-0-444-53480-4.00015-1
Amin, M. L. (2013). P-glycoprotein inhibition for optimal drug delivery. Drug target insights, 7, DTI-S12519. DOI: https://doi.org/10.4137/DTI.S12519
An, J. P., Ha, T. K. Q., Kim, J., Cho, T. O., & Oh, W. K. (2016). Protein tyrosine phosphatase 1B inhibitors from the stems of Akebia quinata. Molecules, 21(8), 1091. DOI: https://doi.org/10.3390/molecules21081091
Ballet, F. (1997). Hepatotoxicity in drug development: detection, significance and solutions. Journal of hepatology, 26, 26-36. DOI: https://doi.org/10.1016/S0168-8278(97)80494-1
Barrett, W. C., DeGnore, J. P., König, S., Fales, H. M., Keng, Y. F., Zhang, Z. Y., & Chock, P. B. (1999). Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry, 38(20), 6699-6705. DOI: https://doi.org/10.1021/bi990240v
Bastaki, S. (2005). Diabetes mellitus and its treatment. Dubai Diabetes and Endocrinology Journal, 13, 111-134. DOI: https://doi.org/10.1159/000497580
Bence, K. K., Delibegovic, M., Xue, B., Gorgun, C. Z., Hotamisligil, G. S., Neel, B. G., & Kahn, B. B. (2006). Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature medicine, 12(8), 917-924. DOI: https://doi.org/10.1038/nm1435
Benet, L. Z., Kroetz, D., Sheiner, L., Hardman, J., & Limbird, L. (1996). Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination. Goodman and Gilman’s the pharmacological basis of therapeutics, 3, e27.
Berrouet, C., Dorilas, N., Rejniak, K. A., & Tuncer, N. (2020). Comparison of drug inhibitory effects (IC50) in monolayer and spheroid cultures. Bulletin of Mathematical Biology, 82(6), 1-23. DOI: https://doi.org/10.1007/s11538-020-00746-7
Bhuia, M. S., Chowdhury, R., Hasan, R., Hasan, M. S. A., Ansari, S. A., Ansari, I. A., Mubarak, M. S., Coutinho, H. D. M., Domiciano, C. B., & Islam, M. T. (2025a). trans-Ferulic Acid Antagonizes the Anti-Inflammatory Activity of Etoricoxib: Possible Interaction of COX-1 and NOS. Biotechnology and applied biochemistry, 10.1002/bab.2739. Advance online publication. https://doi.org/10.1002/bab.2739 DOI: https://doi.org/10.1002/bab.2739
Bhuia, M. S., Eity, T. A., Chowdhury, R., Ansari, S. A., Bappi, M. H., Nayeem, M. A., Akter, F., & Islam, M. T. (2025b). Anxiolytic Activity of Morellic Acid: Modulation of Diazepam's Anxiolytic Effects, Possibly Through GABAergic Interventions. CNS neuroscience & therapeutics, 31(2), e70276. https://doi.org/10.1111/cns.70276 DOI: https://doi.org/10.1111/cns.70276
Bhuia, M. S., Ferdous, J., Chowdhury, R., Ansari, S. A., Ansari, I. A., Al Hasan, M. S., Sheikh, S., & Islam, M. T. (2025c). Exploring the Antiemetic Potential of Caffeic Acid: A Combined In Vivo and Computational Approach. Neurogastroenterology and motility, e70003. Advance online publication. https://doi.org/10.1111/nmo.70003 DOI: https://doi.org/10.1111/nmo.70003
Bhuia, M.S., Chowdhury, Raihan., Afroz, M., Akbor, M.S., Hasan, M.S.A., Ferdous, J., Hasan, R., Alencar, M.V.O.B., Mubarak, M.S., & Islam, M.T. (2025d). Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chemistry & Biodiversity, 2024, e202401904. https://doi.org/10.1002/cbdv.202401904 DOI: https://doi.org/10.1002/cbdv.202401904
Bishwas, D., Hasan, R., Bhuia, M. S., Khatun, T., Saleh, N. I., Ansari, S. A., ... & Islam, M. T. (2025). Modulatory Anxiolytic Effect of Aucubin on Diazepam in Swiss Albino Mice: Possible Mechanisms Through In Vivo Approach with Receptor Binding Affinity. Revista Brasileira de Farmacognosia, 1-11. https://doi.org/10.1007/s43450-025-00629-9 DOI: https://doi.org/10.1007/s43450-025-00629-9
Bithi, S. A., Al Hasan, M. S., Bhuia, M. S., Mia, E., Yana, N. T., Hasan, A. M. W., Uddin, M. B., Sayeed, M. A., Emon, Y., Hasan, R., Chowdhury, R., & Islam, M. T. (2025). Botanical sources, biopharmaceutical profile, anticancer effects with mechanistic insight, toxicological and clinical evidence of prunetin: a literature review. Medical oncology (Northwood, London, England), 42(4), 87. https://doi.org/10.1007/s12032-025-02646-zBjerregaard, P. (2018). Diagnosis and management of short QT syndrome. Heart Rhythm, 15(8), 1261-1267. DOI: https://doi.org/10.1007/s12032-025-02646-z
Chillistone, S., & Hardman, J. G. (2017). Factors affecting drug absorption and distribution. Anaesthesia & Intensive Care Medicine, 18(7), 335-339. DOI: https://doi.org/10.1016/j.mpaic.2017.04.007
Cicirelli, M. F., Tonks, N. K., Diltz, C. D., Weiel, J. E., Fischer, E. H., & Krebs, E. G. (1990). Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proceedings of the National Academy of Sciences, 87(14), 5514-5518. DOI: https://doi.org/10.1073/pnas.87.14.5514
Cui, Y., Yim, J. H., Lee, D. S., Kim, Y. C., & Oh, H. (2012). New diterpene furanoids from the Antarctic lichen Huea sp. Bioorganic & medicinal chemistry letters, 22(24), 7393-7396. DOI: https://doi.org/10.1016/j.bmcl.2012.10.063
Davis, J. L. (2018). Pharmacologic principles. Equine internal medicine, 4, 79-137. DOI: https://doi.org/10.1016/B978-0-323-44329-6.00002-4
de Andrés, F., Altamirano-Tinoco, C., Ramírez-Roa, R., Montes-Mondragón, C. F., Dorado, P., Peñas-Lledó, E. M., & LLerena, A. (2021). Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. The Pharmacogenomics Journal, 21(2), 140-151. DOI: https://doi.org/10.1038/s41397-020-00190-9
de Oliveira, A. M., Tirapelli, C. R., Ambrosio, S. R., & da Costa, F. B. (2008). Diterpenes: a therapeutic promise for cardiovascular diseases. Recent Patents on Cardiovascular Drug Discovery (Discontinued), 3(1), 1-8. DOI: https://doi.org/10.2174/157489008783331689
Dorato, M. A., & Buckley, L. A. (2007). Toxicology testing in drug discovery and development. Current protocols in toxicology, 31(1), 19-1. DOI: https://doi.org/10.1002/0471141755.tx1901s31
Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., & Kennedy, B. P. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283(5407), 1544-1548. DOI: https://doi.org/10.1126/science.283.5407.1544
Feldhammer, M., Uetani, N., Miranda-Saavedra, D., & Tremblay, M. L. (2013). PTP1B: a simple enzyme for a complex world. Critical reviews in biochemistry and molecular biology, 48(5), 430-445. DOI: https://doi.org/10.3109/10409238.2013.819830
Gao, Y., Du, Y. Q., Zang, Y., Liu, H. C., Wan, H. Y., Li, J., ... & Guo, Y. W. (2022). Dolabellane Diterpenoids from the Xisha Soft Coral Clavularia viridis. ACS omega, 7(3), 3052-3059. DOI: https://doi.org/10.1021/acsomega.1c06156
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry, 1(1), 55-68 DOI: https://doi.org/10.1021/cc9800071
Ghosh, P. R., Al Hasan, M. S., Rouf, R., Chowdhury, R., Yadav, B., Mia, E., Islam, M. T., Hasan, M. R., Ansari, S. A., Ansari, I. A., Bhuia, M. S., & Islam, M. T. (2025). Assessments of protodioscin's antinociceptive and antidiarrheal properties: in vivo and in silico investigations on macromolecule binding affinity and modulatory effects. Naunyn-Schmiedeberg's archives of pharmacology, 10.1007/s00210-025-03860-2. Advance online publication. https://doi.org/10.1007/s00210-025-03860-2 DOI: https://doi.org/10.1007/s00210-025-03860-2
Han, Y. M., Oh, H., Na, M., Kim, B. S., Oh, W. K., Kim, B. Y., ... & Ahn, J. S. (2005). PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza. Biological and Pharmaceutical Bulletin, 28(9), 1795-1797. DOI: https://doi.org/10.1248/bpb.28.1795
Hengstler, J. G., & Oesch, F. (2001). Encyclopedia of Genetics; Brenner, S., Miller, JH, Eds. 51-54 DOI: https://doi.org/10.1006/rwgn.2001.1543
Hochman, J. H., Yamazaki, M., Ohe, T., & Lin, J. H. (2002). Evaluation of drug interactions with P-glycoprotein in drug discovery: in vitro assessment of the potential for drug-drug interactions with P-glycoprotein. Current Drug Metabolism, 3(3), 257-273. DOI: https://doi.org/10.2174/1389200023337559
Holden, S. E., Jenkins‐Jones, S., Morgan, C. L., Schernthaner, G., & Currie, C. J. (2015). Glucose‐lowering with exogenous insulin monotherapy in type 2 diabetes: dose association with all‐cause mortality, cardiovascular events and cancer. Diabetes, Obesity and Metabolism, 17(4), 350-362. DOI: https://doi.org/10.1111/dom.12412
Hu, C. L., Xiong, J., Gao, L. X., Li, J., Zeng, H., Zou, Y., & Hu, J. F. (2016). Diterpenoids from the shed trunk barks of the endangered plant Pinus dabeshanensis and their PTP1B inhibitory effects. RSC advances, 6(65), 60467-60478. DOI: https://doi.org/10.1039/C6RA08986K
Hu, C. L., Xiong, J., Wang, P. P., Ma, G. L., Tang, Y., Yang, G. X., ... & Hu, J. F. (2017). Diterpenoids from the needles and twigs of the cultivated endangered pine Pinus kwangtungensis and their PTP1B inhibitory effects. Phytochemistry Letters, 20, 239-245. DOI: https://doi.org/10.1016/j.phytol.2017.05.006
Hu, Q., Feng, M., Lai, L., & Pei, J. (2018). Prediction of drug-likeness using deep autoencoder neural networks. Frontiers in genetics, 9, 585. DOI: https://doi.org/10.3389/fgene.2018.00585
Huang, X. P., Mangano, T., Hufeisen, S., Setola, V., & Roth, B. L. (2010). Identification of human Ether-à-go-go related gene modulators by three screening platforms in an academic drug-discovery setting. Assay and drug development technologies, 8(6), 727-742. DOI: https://doi.org/10.1089/adt.2010.0331
Hubatsch, I., Ragnarsson, E. G., & Artursson, P. (2007). Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature protocols, 2(9), 2111-2119. DOI: https://doi.org/10.1038/nprot.2007.303
Jiang, C. S., Liang, L. F., & Guo, Y. W. (2012). Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacologica Sinica, 33(10), 1217-1245. DOI: https://doi.org/10.1038/aps.2012.90
Jung, H. J., Jung, H. A., Kang, S. S., Lee, J. H., Cho, Y. S., Moon, K. H., & Choi, J. S. (2012). Inhibitory activity of Aralia continentalis roots on protein tyrosine phosphatase 1B and rat lens aldose reductase. Archives of pharmacal research, 35(10), 1771-1777. DOI: https://doi.org/10.1007/s12272-012-1009-7
Keen, P. (1971). Effect of binding to plasma proteins on the distribution, activity and elimination of drugs. In Concepts in biochemical pharmacology (pp. 213-233). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-65052-9_10
Kerns, E. H., Di, L., Petusky, S., Farris, M., Ley, R., & Jupp, P. (2004). Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. Journal of pharmaceutical sciences, 93(6), 1440-1453. DOI: https://doi.org/10.1002/jps.20075
Khan, M. F., Azad, C. S., Kumar, A., Saini, M., Narula, A. K., & Jain, S. (2016). Novel Imbricatolic acid derivatives as protein tyrosine phosphatase-1B inhibitors: Design, synthesis, biological evaluation and molecular docking. Bioorganic & Medicinal Chemistry Letters, 26(8), 1988-1992. DOI: https://doi.org/10.1016/j.bmcl.2016.03.003
Kille, J. W. (2017). Regulatory toxicology. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development (pp. 499-539). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-803620-4.00019-0
Kim, D. H., Paudel, P., Yu, T., Ngo, T. M., Kim, J. A., Jung, H. A., ... & Choi, J. S. (2017). Characterization of the inhibitory activity of natural tanshinones from Salvia miltiorrhiza roots on protein tyrosine phosphatase 1B. Chemico-Biological Interactions, 278, 65-73. DOI: https://doi.org/10.1016/j.cbi.2017.10.013
Kim, H. J., Li, X. J., Kim, D. C., Kim, T. K., Sohn, J. H., Kwon, H., ... & Oh, H. (2021). PTP1B Inhibitory Secondary Metabolites from an Antarctic Fungal Strain Acremonium sp. SF-7394. Molecules, 26(18), 5505. DOI: https://doi.org/10.3390/molecules26185505
Kim, S., Na, M., Oh, H., Jang, J., Sohn, C. B., Kim, B. Y., ... & Ahn, J. S. (2006). PTP1B inhibitory activity of kaurane diterpenes isolated from Siegesbeckia glabrescens. Journal of Enzyme Inhibition and Medicinal Chemistry, 21(4), 379-383. DOI: https://doi.org/10.1080/14756360600741560
Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., ... & Kahn, B. B. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and cellular biology, 20(15), 5479-5489. DOI: https://doi.org/10.1128/MCB.20.15.5479-5489.2000
Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates?. Nature reviews Drug discovery, 3(8), 711-716. DOI: https://doi.org/10.1038/nrd1470
Koren, S., & Fantus, I. G. (2007). Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best practice & research Clinical endocrinology & metabolism, 21(4), 621-640. DOI: https://doi.org/10.1016/j.beem.2007.08.004
Lee, J. S., Abdjul, D. B., Yamazaki, H., Takahashi, O., Kirikoshi, R., Ukai, K., & Namikoshi, M. (2015). Strongylophorines, new protein tyrosine phosphatase 1B inhibitors, from the marine sponge Strongylophora strongilata collected at Iriomote Island. Bioorganic & Medicinal Chemistry Letters, 25(18), 3900-390 DOI: https://doi.org/10.1016/j.bmcl.2015.07.039
Lei, C., Huang, Q. H., Zhao, T., Wang, P. P., Li, J. Y., Li, J., & Hou, A. J. (2019). New triterpenoids and PTP1B inhibitory constituents of Pseudolarix amabilis. Fitoterapia, 139, 104414. DOI: https://doi.org/10.1016/j.fitote.2019.104414
Lessard, L., Stuible, M., & Tremblay, M. L. (2010). The two faces of PTP1B in cancer. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(3), 613-619. DOI: https://doi.org/10.1016/j.bbapap.2009.09.018
Li, H., Tang, Y., Liang, K. Y., Zang, Y., Osman, E. E., Jin, Z. X., ... & Hu, J. F. (2022). Phytochemical and biological studies on rare and endangered plants endemic to China. Part XXII.
Li, M., Hu, C., Han, H., Xiong, J., & Hu, J. J. (2017). Diterpenoids from the needles of the endangered plant Pinus dabeshanensis and their protein tyrosine phosphatase 1B inhibitory effects. Chin J Org Chem, 37, 1860-1863. DOI: https://doi.org/10.6023/cjoc201701002
Liang, L. F., Gao, L. X., Li, J., Taglialatela-Scafati, O., & Guo, Y. W. (2013). Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorganic & medicinal chemistry, 21(17), 5076-5080. DOI: https://doi.org/10.1016/j.bmc.2013.06.043
Liang, L. F., Kurtán, T., Mándi, A., Gao, L. X., Li, J., Zhang, W., & Guo, Y. W. (2014). Sarsolenane and capnosane diterpenes from the Hainan soft coral Sarcophyton trocheliophorum Marenzeller as PTP1B inhibitors. European Journal of Organic Chemistry, 2014(9), 1841-1847.Liang, L., Wang, J., Shi, X., Zhu, Y., Li, J., Zhu, W., ... & Guo, Y. (2017). A Novel Sarsolenane Diterpene as a PTP1B Inhibitor from Hainan Soft Coral Sarcophyton trocheliophorum Marenzeller. Chinese Journal of Chemistry, 35(8), 1246-1250. DOI: https://doi.org/10.1002/ejoc.201301683
Liang, L. F., Kurtán, T., Mándi, A., Yao, L. G., Li, J., Lan, L. F., & Guo, Y. W. (2018). Structural, stereochemical, and bioactive studies of cembranoids from Chinese soft coral Sarcophyton trocheliophorum. Tetrahedron, 74(15), 1933-1941. DOI: https://doi.org/10.1016/j.tet.2018.02.059
Lin, J. H., & Yamazaki, M. (2003). Role of P-glycoprotein in pharmacokinetics. Clinical pharmacokinetics, 42(1), 59-98. DOI: https://doi.org/10.2165/00003088-200342010-00003
Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337-341. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007
Liu, C. C., Lei, C., Zhong, Y., Gao, L. X., Li, J. Y., Yu, M. H., ... & Hou, A. J. (2014). Novel grayanane diterpenoids from Rhododendron principis. Tetrahedron, 70(29), 4317-4322. DOI: https://doi.org/10.1016/j.tet.2014.05.019
Liu, M. N., Zhang, M. M., Li, J. Y., Li, J., Fan, Y. Y., & Yue, J. M. (2018). Six new diterpenoids from Croton laevigatus. Journal of Asian natural products research, 20(10), 909-919. DOI: https://doi.org/10.1080/10286020.2018.1484455
Myrand, S. P., Sekiguchi, K., Man, M. Z., Lin, X., Tzeng, R. Y., Teng, C. H., ... & Wilner, K. D. (2008). Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first‐and third‐generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clinical Pharmacology & Therapeutics, 84(3), 347-361. DOI: https://doi.org/10.1038/sj.clpt.6100482
Na, M., Oh, W. K., Kim, Y. H., Cai, X. F., Kim, S., Kim, B. Y., & Ahn, J. S. (2006). Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorganic & medicinal chemistry letters, 16(11), 3061-3064. DOI: https://doi.org/10.1016/j.bmcl.2006.02.053
Nguyen, P. H., Tuan, H. N., Hoang, D. T., Vu, Q. T., Pham, M. Q., Tran, M. H., & To, D. C. (2019). Glucose uptake stimulatory and PTP1B inhibitory activities of pimarane diterpenes from Orthosiphon stamineus Benth. Biomolecules, 9(12), 859 DOI: https://doi.org/10.3390/biom9120859
Nie, Y. W., Li, Y., Luo, L., Zhang, C. Y., Fan, W., Gu, W. Y., ... & Zhu, J. Y. (2021). Phytochemistry and Pharmacological Activities of the Diterpenoids from the Genus Daphne. Molecules, 26(21), 6598. DOI: https://doi.org/10.3390/molecules26216598
Nishant, T., Sathish Kumar, D., & Arun Kumar, P. M. (2011). Role of pharmacokinetic studies in drug discovery. J Bioequiv Availab, 3, 263-267.
O Nettleton, D., & J Einolf, H. (2011). Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development. Current topics in medicinal chemistry, 11(4), 382-403. DOI: https://doi.org/10.2174/156802611794480882
Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2(4), 541-553. DOI: https://doi.org/10.1602/neurorx.2.4.541
Palermo, G., & De Vivo, M. (2014). Computational chemistry for drug discovery. Encyclopedia of nanotechnology, 1-15. DOI: https://doi.org/10.1007/978-94-007-6178-0_100975-1
Pandit, R., Chen, L., & Götz, J. (2020). The blood-brain barrier: Physiology and strategies for drug delivery. Advanced drug delivery reviews, 165, 1-14. DOI: https://doi.org/10.1016/j.addr.2019.11.009
Parasuraman, S. (2011). Toxicological screening. Journal of pharmacology & pharmacotherapeutics, 2(2), 74. DOI: https://doi.org/10.4103/0976-500X.81895
Pardridge, W. M. (2012). Drug transport across the blood–brain barrier. Journal of cerebral blood flow & metabolism, 32(11), 1959-1972. DOI: https://doi.org/10.1038/jcbfm.2012.126
Perez Gutierrez, R. M., & Baez, E. G. (2020). Diterpenes from seeds of Phalaris canariensis and their PTP1B inhibitory activity and hypoglycemic effects in streptozotocin-induced diabetic mice. Journal of Asian Natural Products Research, 22(7), 603-617. DOI: https://doi.org/10.1080/10286020.2019.1636786
Petersen, M. J., Liang, C., Kjaerulff, L., Ndi, C., Semple, S., Buirchell, B., ... & Staerk, D. (2022). Serrulatane diterpenoids from the leaves of Eremophila glabra and their potential as antihyperglycemic drug leads. Phytochemistry, 196, 113072. DOI: https://doi.org/10.1016/j.phytochem.2021.113072
Petersson, C., Papasouliotis, O., Lecomte, M., Badolo, L., & Dolgos, H. (2019). Prediction of volume of distribution in humans: analysis of eight methods and their application in drug discovery. Xenobiotica. DOI: https://doi.org/10.1080/00498254.2019.1625084
Pleuvry, B. J. (2005). Factors affecting drug absorption and distribution. Anaesthesia & Intensive Care Medicine, 6(4), 135-138. DOI: https://doi.org/10.1383/anes.6.4.135.63632
Press, B., & Di Grandi, D. (2008). Permeability for intestinal absorption: Caco-2 assay and related issues. Current drug metabolism, 9(9), 893-900. DOI: https://doi.org/10.2174/138920008786485119
Reichel, A., & Lienau, P. (2015). Pharmacokinetics in drug discovery: an exposure-centred approach to optimising and predicting drug efficacy and safety. New approaches to drug discovery, 235-260. DOI: https://doi.org/10.1007/164_2015_26
Seely, B. L., Staubs, P. A., Reichart, D. R., Berhanu, P., Milarski, K. L., Saltiel, A. R., ... & Olefsky, J. M. (1996). Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes, 45(10), 1379-1385. DOI: https://doi.org/10.2337/diab.45.10.1379
Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological reviews, 66(1), 334-395. DOI: https://doi.org/10.1124/pr.112.007336
Smith, D. A., Beaumont, K., Maurer, T. S., & Di, L. (2015). Volume of distribution in drug design: Miniperspective. Journal of medicinal chemistry, 58(15), 5691-5698. DOI: https://doi.org/10.1021/acs.jmedchem.5b00201
Smith, D. A., Beaumont, K., Maurer, T. S., & Di, L. (2018). Clearance in drug design: miniperspective. Journal of Medicinal Chemistry, 62(5), 2245-2255. DOI: https://doi.org/10.1021/acs.jmedchem.8b01263
Tahtah, Y., Wubshet, S. G., Kongstad, K. T., Heskes, A. M., Pateraki, I., Møller, B. L., ... & Staerk, D. (2016). High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida. Fitoterapia, 110, 52-58. DOI: https://doi.org/10.1016/j.fitote.2016.02.008
Tanim, T. I., Al-Qaaneh, A. M., Chowdhury, R., Bhuia, M. S., Islam, T., Akbor, M. S., ... & El-Nashar, H. A. (2025). Antiemetic activity of Sesamol possibly through serotonergic and dopaminergic receptor interaction pathways: In vivo and in silico studies. Journal of Functional Foods, 126, 106702. https://doi.org/10.1016/j.jff.2025.106702 DOI: https://doi.org/10.1016/j.jff.2025.106702
Tonks, N. K. (1988). Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem, 263, 6722-6730. DOI: https://doi.org/10.1016/S0021-9258(18)68702-2
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, 45(12), 2615-2623. DOI: https://doi.org/10.1021/jm020017n
Venkatesh, S., & Lipper, R. A. (2000). Role of the development scientist in compound lead selection and optimization. Journal of pharmaceutical sciences, 89(2), 145-154. DOI: https://doi.org/10.1002/(SICI)1520-6017(200002)89:2<145::AID-JPS2>3.0.CO;2-6
Vieira, M. N., Lyra e Silva, N. M., Ferreira, S. T., & De Felice, F. G. (2017). Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer’s therapy?. Frontiers in Aging Neuroscience, 9, 7. DOI: https://doi.org/10.3389/fnagi.2017.00007
Wang, B., & Zhou, S. F. (2009). Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Current medicinal chemistry, 16(31), 4066-4218. DOI: https://doi.org/10.2174/092986709789378198
Wang, N. N., Huang, C., Dong, J., Yao, Z. J., Zhu, M. F., Deng, Z. K., ... & Cao, D. S. (2017). Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC advances, 7(31), 19007-19018. DOI: https://doi.org/10.1039/C6RA28442F
Wessel, M. D., Jurs, P. C., Tolan, J. W., & Muskal, S. M. (1998). Prediction of human intestinal absorption of drug compounds from molecular structure. Journal of Chemical Information and Computer Sciences, 38(4), 726-735. DOI: https://doi.org/10.1021/ci980029a
Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., ... & Cao, D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5-W14. DOI: https://doi.org/10.1093/nar/gkab255
Xiong, J., Hong, Z. L., Gao, L. X., Shen, J., Liu, S. T., Yang, G. X., ... & Hu, J. F. (2015). Chlorabietols A–C, phloroglucinol-diterpene adducts from the chloranthaceae plant Chloranthus oldhamii. The Journal of Organic Chemistry, 80(21), 11080-11085. DOI: https://doi.org/10.1021/acs.joc.5b01658
Yang, P., Liu, D. Q., Liang, T. J., Li, J., Zhang, H. Y., Liu, A. H., ... & Mao, S. C. (2015). Bioactive constituents from the green alga Caulerpa racemosa. Bioorganic & Medicinal Chemistry, 23(1), 38-45. DOI: https://doi.org/10.1016/j.bmc.2014.11.031
Zabolotny, J. M., Kim, Y. B., Welsh, L. A., Kershaw, E. E., Neel, B. G., & Kahn, B. B. (2008). Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. Journal of Biological Chemistry, 283(21), 14230-14241. DOI: https://doi.org/10.1074/jbc.M800061200
Zhang, D. B., Wang, Z., Liang, Y. N., Yu, J. G., Zhang, Z., Liu, S. J., & Duan, D. Z. (2020). Jatrophainolides A–C, new cembrane-type diterpenoids with PTP1B inhibitory activity from the root bark of Jatropha integerrima. Phytochemistry letters, 36, 166-170. DOI: https://doi.org/10.1016/j.phytol.2020.02.007
Zhang, P., Lin, Y., Wang, F., Fang, D., & Zhang, G. (2019). Diterpenes from Dysoxylum lukii Merr. Phytochemistry Letters, 29, 53-56 DOI: https://doi.org/10.1016/j.phytol.2018.09.012
Zhang, S., & Zhang, Z. Y. (2007). PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug discovery today, 12(9-10), 373-381. DOI: https://doi.org/10.1016/j.drudis.2007.03.011
Zhao, B. T., Nguyen, D. H., Le, D. D., Choi, J. S., Min, B. S., & Woo, M. H. (2018). Protein tyrosine phosphatase 1B inhibitors from natural sources. Archives of pharmacal research, 41(2), 130-161. DOI: https://doi.org/10.1007/s12272-017-0997-8
Downloads
Published
Data Availability Statement
The supplementary files associated with this study are publicly available in the Zenodo repository under the DOI: https://doi.org/10.5281/zenodo.15164047.
Issue
Section
Categories
License
Copyright (c) 2025 Md Shimul Bhuia, Raihan Chowdhury, Tamanna Khatun, Salehin Sheikh (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
