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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder 

characterized by cognitive decline and neuronal loss. The identification of reliable 

biomarkers is crucial for early diagnosis and therapeutic intervention. This study 

explores an insight into current strategies and future approaches for improvement of the 

treatment, diagnosis, or prevention of AD. AD relevant data were collected from 

databases like PubMed, Google Scholar, and ScienceDirect. Our study findings reveal that 

traditional biomarkers such as amyloid-beta (Aβ) and tau proteins remain central to AD 

pathology, but emerging targets, including neurofilament light chain (NfL), triggering 

receptor expressed on myeloid cells 2 (TREM2), and synaptic proteins, are gaining 

attention for their diagnostic and prognostic value. Additionally, lipid peroxidation 

markers (4-HNE, MDA) and Cytokines (IL-6, TNF-α, and IL-1β) analyses have provided 

an invasive alternatives for disease monitoring. These advancements facilitate the 

development of precision medicine approaches, including targeted therapies aimed at 

modulating key pathological proteins.  
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1. Introduction 

Alzheimer's disease (AD) is a progressive, unremitting, 
neurodegenerative disease that damages large portions of the 
hippocampus and cerebral cortex. It is characterized by the 
accumulation of insoluble forms of toxic amyloid-beta (Aβ) plaques 
in extracellular spaces and blood vessel walls, and the microtubule 
protein tau aggregates in neurofibrillary tangles and causes 
neuroinflammation in the brain, which ultimately leads to 
irreversible neuronal loss (Botella Lucena et al., 2024; Thakur et 
al., 2018; Kumar et al., 2015; Masters et al., 2015). The 
accumulation of Aβ peptide in the brain, known as amyloid 
plaques, is an early occurrence in AD that may lead to 
neurodegeneration, cognitive, and functional impairment (Mintun 
et al., 2021). AD is an age-related disease that increases around 5% 
of those aged 65 to 74, 13.1% of those aged 75 to 84, and 33.3% of 
those aged 85 or older. Global population aging predicted the 
present significant rise in the number of people with this condition 
and predicts a future spike in the number of affected individuals. 
Between 2015 and 2050, the proportion of the global population 
over 60 will almost double, from 12% to 22%, or 2.1 billion people 

(Cummings et al., 2024). The worldwide burden of AD is 
anticipated to increase from 26.6 million cases in 2006 to 106.8 
million by 2050 (Thakur et al., 2018).  The abnormal amyloid 
plaque triggers the phosphorylation of tau protein, which 
subsequently spreads nearly infectiously by microtubule transport 
to adjacent neurons, causing neuronal death (Pooler et al., 2013). 
Therefore, targeted Aβ and phosphorylated tau (p-tau) are 
considered potential treatments in AD. However, cerebrospinal 
fluid (CSF) and positron emission tomography (PET) biomarkers, 
in conjunction with several relatively recent clinical criteria, can 
help diagnose AD in live individuals, although the assessment of 
brain tissue is still the primary method of diagnosis (Bateman et 
al., 2020; Budson et al., 2012). Disease-modifying treatments for 
AD are still being researched extensively. Currently, treatment 
focuses on symptomatic therapy, gene therapy, immunotherapy, 
probiotics, peptidomimetics, metal chelators, and quantum dots as 
breakthroughs in existing AD management strategies (Khan et al., 
2020; Yiannopoulou et al., 2020). Although attempts are now 
underway to lessen the generation and overall burden of disease in 
the brain. 
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Based on available data, monoclonal antibodies, also known as 
passive immunotherapy, are used to treat AD by injecting an 
antibody that targets abnormal Aβ and makes it easier for the 
brain to eliminate it (Weller et al., 2018). Several specialists believe 
that combining a monoclonal antibody and a beta-site amyloid 
precursor protein cleaving enzyme 1 (BACE1) inhibitor to remove 
Aβ will lead to success in treating AD (Jacobsen et al., 2014; Perry 

et al., 2015). For the diagnosis of AD, phosphorylated tau 181 (P-
tau181) can be utilized as a predictive and confirmatory biomarker 
that placed in the brain and released in CSF, which crosses the 
blood-brain barrier and reaches the bloodstream to function as an 
AD biomarker (Janelidze et al., 2020; Thijssen et al., 2020). In 
treating AD, many tau vaccinations have demonstrated both safety 
and effectiveness in animal studies (Rosenmann et al., 2013; Panza 
et al., 2016). In human patients, an anti-tau medication showed a 
notable safety profile and even boosted a beneficial immunological 
response (Novak et al., 2017). There are now some further early-
phase trials of drugs that target the tau protein, but the findings 
have not yet been released (Weller et al., 2018; Panza et al., 2016). 
This study aims to give an insight into current strategies and future 
approaches for improvement of the treatment, diagnosis, or 
prevention of AD. 

2. Methodology 

A systematic and in-depth search was conducted across premier 
scientific databases (current as of January 10, 2025), including 
PubMed, ScienceDirect, Web of Science, and Google Scholar, using 
the keywords "Alzheimer," "Protein," and "Biomarker" to uncover 

relevant research. 

2.1. Inclusion criteria 

Specific criteria were established to select studies for this review, 
focusing on key biomarkers associated with Alzheimer's disease. 
Research conducted in vivo, in vitro, or ex vivo, with or without the 
use of experimental animals, was considered. Additionally, studies 
were included regardless of whether they detailed the underlying 
mechanism of action. 

2.2. Exclusion criteria 

The exclusion criteria for this review were clearly defined to 
maintain the relevance of the included studies. Studies were 
excluded if their titles or abstracts did not meet the inclusion 
criteria or if they contained duplicate data. Additionally, research 
focusing on neurological diseases was excluded if the findings were 
not directly related to the primary objectives of the current study. 

3. Results and discussion 

3.1. Pathophysiology of Alzheimer’s disease 

AD is a progressive neurodegenerative disorder characterized by 
cognitive decline and memory impairment (Chen et al., 2022). It’s 
pathophysiology involves multiple interrelated mechanisms, 
including Aβ accumulation, tau pathology, neuroinflammation, and 
synaptic dysfunction, ultimately leading to neuronal loss (Long & 
Holtzman, 2019). The pathophysiology of Alzheimer’s disease 
depicted in Fig. 1. 

Fig. 1. The pathophysiology of Alzheimer’s disease via amyloid-beta plaque and neurofibrillary tangles formation. Microglia uptake amy-
loid-beta plaque degrade it, release pro-inflammatory cytokines, and attract astrocytes to response. [IL-6: Interleukin-6; TNF-α: Tumor Necro-

sis Factor Alpha; IL-1β: Interleukin-1 Beta; Aβ: Amyloid-beta] 

Munni et al. 
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The amyloid cascade hypothesis posits that the accumulation of 
Aβ, generated from amyloid precursor protein (APP) via β- and γ-
secretase cleavage, plays a central role in AD pathology (Hardy & 
Higgins, 1992; Selkoe & Hardy, 2016). Aβ deposition disrupts 
neuronal function and initiates downstream pathological events, 
including Tau hyperphosphorylation and microglial activation 
(Knopman et al., 2021). Tau hyperphosphorylation leads to the 
formation of neurofibrillary tangles (NFTs) by destabilizing 
microtubules and promoting aggregation into toxic forms, with 
GSK-3β and other kinases contributing to this process (Shi & Zhao, 
2024; Shareena & Kumar, 2023). Chronic neuroinflammation in AD 
is driven by activated microglia and astrocytes, which release 
proinflammatory cytokines and reactive oxygen species (ROS) in 
response to Aβ and tau aggregates, further exacerbating neuronal 
damage and synaptic dysfunction (Agostinho et al., 2010). Synaptic 
impairment is amplified by soluble Aβ oligomers, which disrupt 
synaptic plasticity and cause excitotoxicity through N-Methyl-D-
Aspartate/ α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic 
Acid (NMDA/AMPA) receptors, while tau pathology impairs 
microtubule stability. These processes ultimately lead to neuronal 
loss and cognitive decline (Meftah & Gan, 2023; Bukke et al., 2020). 

3.2. Role of Proteins in Alzheimer's disease and therapeutic 
approach 

Chen et al. (2017) highlighted the neurotoxic role of Aβ in AD, 
emphasizing its aggregation into oligomers, protofibrils, and fibrils. 
Advances in structural studies reveal Aβ fibril formation, guiding 
therapeutic strategies such as inhibiting oligomerization, 
immunotherapy, and targeting microglia to reduce inflammation. 
Despite ongoing efforts, current treatments remain symptomatic, 
while Aβ inhibitors and antibodies are under clinical investigation. 
Identifying key Aβ receptors and their structures is crucial for 
developing effective therapies (Chen et al., 2017). Monteiro et al. 
(2023) and Medina et al. (2014) demonstrated that neurofibrillary 
tangles, composed of hyperphosphorylated tau protein, represent 
a key hallmark of AD. Tau, a microtubule-associated protein, 
regulates axonal transport and dendritic structure, but abnormal 
hyperphosphorylation disrupts its function, leading to aggregation, 
synaptic loss, and neuronal death. Key factors driving Tau toxicity 
include conformational changes favoring phosphorylation and an 
imbalance between kinases (e.g., GSK-3β, cdk5) and phosphatases 
(PP1, PP2A). GSK-3β, a major contributor to tau 
hyperphosphorylation, is a promising therapeutic target for AD 
treatment (Monteiro et al., 2023; Medina et al., 2014). Monteiro et 
al. (2023) also find that oxidative stress in AD arises from an 

imbalance between reactive oxygen/nitrogen species and 
antioxidant defenses, leading to lipid, protein, and DNA damage. It 
contributes to AD progression through Aβ accumulation, microglial 
activation, redox-active metal dysregulation, and mitochondrial 
dysfunction. Aβ enhances oxidative stress by activating 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 
while microglia and astrocytes exacerbate neuroinflammation, 
releasing proinflammatory cytokines. Redox-active metals like Cu 
and Fe further amplify ROS production, promoting neurotoxicity. 
Mitochondrial dysfunction, characterized by impaired 
bioenergetics and increased ROS, accelerates neuronal damage. 
Targeting oxidative stress, metal homeostasis, and mitochondrial 
health holds promise for AD therapeutics (Monteiro et al., 2023). 
Established biomarkers and proteins associated with Alzheimer’s 
disease are displayed in Table 1. 

3.3. Emerging protein and biomarkers: novel targets and 
future directions 

3.3.1. Inflammatory and immune biomarkers 

3.3.1.1. Glial fibrillary acidic protein 

Glial fibrillary acidic protein (GFAP) is a key protein expressed by 
astrocytes and serves as a marker of astrocyte activation. It is 
upregulated during reactive gliosis, which occurs in response to 
brain injury, inflammation, or neurodegenerative diseases (Pekny 
& Nilsson, 2005). Increased GFAP expression indicates astrocyte 
activation, often associated with neuroinflammation in conditions 
like AD, multiple sclerosis, and traumatic brain injury (TBI). 
Elevated levels of GFAP are considered biomarkers of 
neurodegeneration and injury (Kim et al., 2023; Rauf et al., 2022) 
(Fig. 2). 

3.3.1.2. Triggering receptor expressed on myeloid cells 2  

Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell 
surface receptor predominantly expressed on microglia, the 
resident immune cells of the central nervous system (CNS). TREM2 
plays a crucial role in microglial function, including regulating their 
response to injury, inflammation, and neurodegeneration (Jay et 
al., 2017).  It is involved in the recognition and clearance of cellular 
debris, as well as modulating immune responses in the brain. 
Mutations in TREM2 have been linked to neurodegenerative 
diseases such as AD, where they impair microglial function, leading 
to an inadequate immune response and exacerbating disease 
progression (Gratuze et al., 2018; Carmona et al., 2018) (Fig. 2).  

Key proteins 
Involved 

Role of the protein Therapeutic approaches Key findings References 

Amyloid-beta 
oligomers 
(AβOs) 
  

Forms amyloid 
plaques in the brain 

Immunotherapy, small mole-
cule inhibitors 

Reduce Aβ plaques Chen et al., 2017 

Tau 
  

Formation of neurofi-
brillary tangles and 
neuronal loss 

Immunotherapy, multi-target 
small molecules 

Reduce or clear tau 
from the brain 

Monteiro et al., 2023; 
Medina et al., 2014 

Oxidative stress Formation of senile 
plaques in the brain 

Antioxidant therapy, multi-
target small molecules 

Protect against oxida-
tive stress and decrease 
ROS production 

Monteiro et al., 2023 

ROS: Reactive Oxygen Species; Aβ: Amyloid-beta 

Table 1. Established biomarkers and proteins for Alzheimer’s disease 

Munni et al. 
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3.3.1.3. Cytokines (IL-6, TNF-α, IL-1β) 

Cytokines such as Interleukin-6 (IL-6), Tumor Necrosis Factor 
Alpha (TNF-α), and Interleukin-1 Beta (IL-1β) play pivotal roles in 
neuroinflammation, a key factor in neurodegenerative diseases like 
Alzheimer's, Parkinson's, and multiple sclerosis (Heneka et al., 
2015; Cacquevel et al., 2004). These pro-inflammatory cytokines 
activate glial cells, enhance the production of other inflammatory 
mediators, and contribute to neuronal damage. IL-6 promotes glial 
activation, TNF-α triggers cell death and disrupts the blood-brain 
barrier, while IL-1β induces further inflammation and 
neurodegeneration by activating microglia and astrocytes, driving 
disease progression (Ng et al., 2018; Zheng et al., 2016) (Fig. 2). 

3.3.2. Synaptic and neuronal biomarkers 

3.3.2.1. Synaptosomal-associated protein 25: Synaptic 
integrity 

SNAP-25 is a crucial protein involved in synaptic vesicle fusion and 
neurotransmitter release, playing an essential role in maintaining 
synaptic integrity (Li et al., 2024). SNAP-25 is part of the SNARE 
complex, which facilitates the docking and fusion of synaptic 
vesicles with the presynaptic membrane (Antonucci et al., 2016). 
Alterations in SNAP-25 expression or function can lead to 
disruptions in synaptic transmission, contributing to 
neurodegenerative diseases and neurological disorders, such as AD 
and schizophrenia (Mazzucchi et al., 2020) (Fig. 2). 

Fig. 2. Emerging Protein and Biomarkers. IL-6: Interleukin-6; TNF-α: Tumor Necrosis Factor Alpha; IL-1β: Interleukin-1 Beta; 4-HNE: 4

-hydroxy-2-nonenal; MDA: Malondialdehyde; Synaptosomal-associated protein 25 (SNAP-25) 

3.3.3. Metabolic and Oxidative Stress Biomarkers 

3.3.3.1. Lipid peroxidation markers 

Lipid peroxidation markers, such as 4-hydroxy-2-nonenal (4-HNE) 
and malondialdehyde (MDA), are products of oxidative stress that 
occur when polyunsaturated fatty acids in cell membranes are 
degraded (Breitzig et al., 2016). These markers are commonly 
elevated in neurological diseases, reflecting neuronal damage and 
oxidative injury. Increased levels of 4-HNE and MDA have been 
associated with various neurodegenerative conditions, including 
AD, Parkinson's disease, and multiple sclerosis. These markers 
contribute to neuroinflammation and are used as biomarkers to 
assess the extent of oxidative damage in the brain (Z arkovic  et al., 
2024) (Fig. 2). 

4. Conclusion 

In conclusion, the identification and development of novel 

biomarkers in AD have significantly advanced, offering promising 
avenues for early diagnosis and therapeutic intervention. 
Traditional biomarkers, such as amyloid-beta and tau proteins, 
continue to play a central role in understanding AD pathology, 
while emerging protein targets like neurofilament light chain 
(NfL), TREM2, and synaptic proteins show great potential for 
improving diagnostic accuracy and monitoring disease 
progression. minimally invasive methods, such as blood-based 
biomarkers and cerebrospinal  fluid  analyses, paves the way for 
more accessible and efficient disease tracking. These 
advancements in biomarker research hold the promise of 
personalized treatment strategies, ultimately leading to more 
effective therapies and improved patient outcomes in the fight 
against AD. 
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